A. | (1,+∞) | B. | (0,1)∪(1,+∞) | C. | (-1,0)∪(1,+∞) | D. | (-∞,-1)∪(1,+∞) |
分析 根據(jù)函數(shù)奇偶性的性質(zhì)進(jìn)行求解即可.
解答 解:若x<0,則-x>0,
∵當(dāng)x>0時(shí),f(x)=lnx,
∴當(dāng)-x>0時(shí),f(-x)=ln(-x),
∵f(x)為定義在R上的奇函數(shù),
∴f(-x)=ln(-x)=-f(x),
即f(x)=-ln(-x),x<0,
當(dāng)x>0時(shí),由f(x)>0得lnx>0,得x>1,
當(dāng)x<0時(shí),由f(x)>0得-ln(-x)>0,即ln(-x)<0,得0<-x<1,即-1<x<0,
綜上x>1或-1<x<0,
即不等式的解集為(-1,0)∪(1,+∞),
故選:C.
點(diǎn)評(píng) 本題主要考查不等式的求解,利用函數(shù)奇偶性的性質(zhì)求出函數(shù)的解析式是解決本題的關(guān)鍵.注意要進(jìn)行分類討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1 | C. | $\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p是真命題,¬p:?x0∈R,f(x0)<0 | B. | p是假命題,¬p:?x0∈R,f(x0)≤0 | ||
C. | q是真命題,¬q:?x∈(0,+∞),g(x)≠0 | D. | q是假命題,¬q:?x∈(0,+∞),g(x)≠0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≥-1 | B. | m≥$\sqrt{2}$-1 | C. | m≤-$\sqrt{2}$-1 | D. | m≥$\sqrt{2}-1或m≤-\sqrt{2}$-1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com