A. | -1 | B. | 0 | C. | 1 | D. | 2 |
分析 作出不等式組對應的平面區(qū)域,利用目標函數的幾何意義,求最大值.
解答 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當直線y=-2x+z經過點C時,直線y=-2x+z的截距最大,
此時z最大.
由$\left\{\begin{array}{l}{x+y=1}\\{x-y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,即C(1,0),
代入目標函數z=2x+y得z=2×1+0=2.
即目標函數z=2x+y的最大值為2.
故選:D.
點評 本題主要考查線性規(guī)劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | p是真命題,¬p:?x0∈R,f(x0)<0 | B. | p是假命題,¬p:?x0∈R,f(x0)≤0 | ||
C. | q是真命題,¬q:?x∈(0,+∞),g(x)≠0 | D. | q是假命題,¬q:?x∈(0,+∞),g(x)≠0 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | m≥-1 | B. | m≥$\sqrt{2}$-1 | C. | m≤-$\sqrt{2}$-1 | D. | m≥$\sqrt{2}-1或m≤-\sqrt{2}$-1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{x}{y}+\frac{y}{x}$ | B. | $\frac{{{x^2}+3}}{{\sqrt{{x^2}+2}}}$ | C. | 5x+5-x | D. | tanx+cotx |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [$\frac{π}{8}$+2kπ,$\frac{5π}{8}$+2kπ](k∈Z) | B. | [$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ](k∈Z) | ||
C. | [-$\frac{3π}{8}$+2kπ,$\frac{π}{8}$+2kπ](k∈Z) | D. | [-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ](k∈Z) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com