精英家教網 > 高中數學 > 題目詳情
4.若實數x,y滿足不等式組$\left\{\begin{array}{l}x+y≤1\\ x-y≤1\\ x≥0\end{array}\right.$,則2x+y的最大值是( 。
A.-1B.0C.1D.2

分析 作出不等式組對應的平面區(qū)域,利用目標函數的幾何意義,求最大值.

解答 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當直線y=-2x+z經過點C時,直線y=-2x+z的截距最大,
此時z最大.
由$\left\{\begin{array}{l}{x+y=1}\\{x-y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,即C(1,0),
代入目標函數z=2x+y得z=2×1+0=2.
即目標函數z=2x+y的最大值為2.
故選:D.

點評 本題主要考查線性規(guī)劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

14.已知$|\begin{array}{l}{tanθ}&{i}\\{1}&{2}\end{array}|$=i2015+i2016(其中i為虛數單位),則cosθ=$±\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知f(x)=ex-x,g(x)=lnx+x+1,命題p:?x∈R,f(x)>0,命題q:?x0∈(0,+∞),使得g(x0)=0,則下列說法正確的是( 。
A.p是真命題,¬p:?x0∈R,f(x0)<0B.p是假命題,¬p:?x0∈R,f(x0)≤0
C.q是真命題,¬q:?x∈(0,+∞),g(x)≠0D.q是假命題,¬q:?x∈(0,+∞),g(x)≠0

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.已知點P是邊長為4的正方形內任一點,則點P到四個頂點的距離均大于2的概率是1$-\frac{π}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.已知拋物線y2=8x的準線過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一個焦點,且雙曲線的實軸長為2,則該雙曲線的方程為${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.裝里裝有3個紅球和1個白球,這些球除了顏色不同外,形狀、大小完全相同.從中任意取出2個球,則取出的2個球恰好是1個紅球、1個白球的概率等于( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知對于圓x2+y2-2y=0上任意一點P,不等式x+y+m≥0恒成立,則實數m的取值范圍為( 。
A.m≥-1B.m≥$\sqrt{2}$-1C.m≤-$\sqrt{2}$-1D.m≥$\sqrt{2}-1或m≤-\sqrt{2}$-1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.下列各式中,最小值為2的是( 。
A.$\frac{x}{y}+\frac{y}{x}$B.$\frac{{{x^2}+3}}{{\sqrt{{x^2}+2}}}$C.5x+5-xD.tanx+cotx

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.函數y=cos($\frac{π}{4}$-2x)的單調遞減區(qū)間是( 。
A.[$\frac{π}{8}$+2kπ,$\frac{5π}{8}$+2kπ](k∈Z)B.[$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ](k∈Z)
C.[-$\frac{3π}{8}$+2kπ,$\frac{π}{8}$+2kπ](k∈Z)D.[-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ](k∈Z)

查看答案和解析>>

同步練習冊答案