A. | x0<a | B. | x0>a | C. | x0<c | D. | x0>c |
分析 確定函數(shù)為增函數(shù),進(jìn)而可得f(a)、f(b)、f(c)中一項(xiàng)為負(fù)的、兩項(xiàng)為正的;或者三項(xiàng)都是負(fù)的,分類討論,結(jié)合函數(shù)的零點(diǎn)存在定理,從而得到答案.
解答 解:∵y=2x在(0,+∞)上是增函數(shù),y=log${\;}_{\frac{1}{2}}$x在(0,+∞)上是減函數(shù),
可得$f(x)={2^x}-{log_{\frac{1}{2}}}$x在(0,+∞)上是增函數(shù),
由0<a<b<c,且 f(a)f(b)f(c)<0,
∴f(a)、f(b)、f(c)中一項(xiàng)為負(fù)的、兩項(xiàng)為正的;或者三項(xiàng)都是負(fù)的.
即f(a)<0,0<f(b)<f(c);或f(a)<f(b)<f(c)<0.
由于實(shí)數(shù)x0是函數(shù)y=f(x)的一個(gè)零點(diǎn),
當(dāng)f(a)<0,0<f(b)<f(c)時(shí),a<x0<b,此時(shí)B成立.
當(dāng)f(a)<f(b)<f(c)<0時(shí),x0>c>a.
綜上可得,B成立.
故選:B.
點(diǎn)評(píng) 本題主要考查函數(shù)的零點(diǎn)的定義,判斷函數(shù)的零點(diǎn)所在的區(qū)間的方法,注意運(yùn)用零點(diǎn)存在定理,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=($\root{3}{x}$)3和y=x | B. | y=($\sqrt{x}$)2和y=x | C. | y=$\sqrt{x^2}$和y=($\sqrt{x}$)2 | D. | y=$\root{3}{x^3}$和y=$\frac{x^2}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{4}{5}$ | B. | $-\frac{3}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直角三角形 | B. | 等腰直角三角形 | C. | 正三角形 | D. | 鈍角三角形 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com