18.一條直線經(jīng)過P(2,1),并和直線5x-2y+3=0的夾角等于45°,求這條直線的方程.

分析 先根據(jù)兩條直線的夾角公式求出直線的斜率,用點斜式寫出直線的方程,最后結(jié)果化為一般式.

解答 解:設(shè)所求直線的斜率為k,由題意得tan45°=|$\frac{\frac{5}{2}-k}{1+\frac{5}{2}k}$|=1,
解得k1=-$\frac{7}{3}$,k2=$\frac{3}{7}$,
∵直線l′經(jīng)過點P(2,1)
∴直線的方程為7x+3y-17=0和3x-7y+1=0

點評 本題考查兩條直線的夾角公式的應(yīng)用,以及用點斜式求直線的方程,本題解題的關(guān)鍵是根據(jù)夾角公式做出要求直線的斜率,本題是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.$\overrightarrow{a}$=(1,1),若$\overrightarrow{a}$$•\overrightarrow$=0,($\overrightarrow$-$\overrightarrow{a}$)2=6,求向量$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.計算∫01x2dx值屬于區(qū)間( 。
A.(0,$\frac{1}{2}$)B.[$\frac{1}{2}$,1)C.[1,$\frac{3}{2}$)D.[$\frac{3}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等比數(shù)列{an}的前n項和為Sn,求證S7,S14-S7,S21-S14也成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.化簡下列各式:
(1)-p2cos180°+q2sin90°-2pqcos0°;
(2)asin0°+bcos90°+ctan180°;
(3)mtan0+ncos$\frac{π}{2}$-psinπ-qcos$\frac{3π}{2}$-rsin2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列運算中正確的是( 。
A.$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{AB}$B.$\overrightarrow{AB}$$-\overrightarrow{CD}$=$\overrightarrow{DB}$C.$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{BA}$D.$\overrightarrow{AB}$-$\overrightarrow{AB}$=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.$\sqrt{1-si{n}^{2}30°}$=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,以原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=\sqrt{2}(cosθ+sinθ)}\\{y=\sqrt{2}(cosθ-sinθ)}\end{array}\right.$(θ為參數(shù)),曲線C與l的交點的極坐標(biāo)為(2,$\frac{π}{3}$)和(2,$\frac{π}{6}$),
(1)求直線l的普通方程;
(2)設(shè)P點為曲線C上的任意一點,求P點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\frac{\overline z}{3+i}$=1+i,則復(fù)數(shù)z在復(fù)平面上對應(yīng)點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案