分析 設(shè)等比數(shù)列{an}的公比為q,從而討論公比以確定前n項(xiàng)和,從而證明.
解答 證明:設(shè)等比數(shù)列{an}的公比為q,
①當(dāng)q=1時(shí),S7=7a1,S14-S7=7a1,S21-S14=7a1,
故顯然成立,
②當(dāng)q≠1時(shí),S7=$\frac{{a}_{1}(1-{q}^{7})}{1-q}$,S14-S7=$\frac{{a}_{8}(1-{q}^{7})}{1-q}$,S21-S14=$\frac{{a}_{15}(1-{q}^{7})}{1-q}$,
故$\frac{{S}_{21}-{S}_{14}}{{S}_{14}-{S}_{7}}$=$\frac{{a}_{15}}{{a}_{8}}$=q7,$\frac{{S}_{14}-{S}_{7}}{{S}_{7}}$=$\frac{{a}_{8}}{{a}_{1}}$=q7;
故S7,S14-S7,S21-S14成等比數(shù)列;
綜上所述,
S7,S14-S7,S21-S14成等比數(shù)列.
點(diǎn)評(píng) 本題考查了分類討論的思想應(yīng)用及等比數(shù)列前n項(xiàng)和公式的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 甲得6本,乙得2本 | B. | 甲得5本,乙得3本 | C. | 甲得4本,乙得4本 | D. | 甲得7本,乙得1本 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 定義域?yàn)镽 | B. | 值域?yàn)椋?∞,0) | ||
C. | 在$[kπ-\frac{π}{2},kπ](k∈Z)$上為減函數(shù) | D. | 最小正周期為π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com