分析 (1)利用等比數(shù)列的通項公式可得an,再利用等差數(shù)列的通項公式可得cn.
(2)由(1)得cn=2n+2=an+bn=2×3n-1+bn,可得bn=(2n+2)-2×3n-1.利用等差數(shù)列與等比數(shù)列的前n項和公式即可得出.
解答 解:(1)設公比為q,由,a2=6,a1+a2+a3=26,
可得$\left\{\begin{array}{l}{{a}_{1}q=6}\\{{a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}=26}\end{array}\right.$,
解得q=3,或 q=$\frac{1}{3}$,
再由q>1可得q=3,
∴a1=2,
∴an=2×3n-1.
c1=a1+b1=4,
又∵數(shù)列{cn}是公差為2的等差數(shù)列,
∴cn=4+(n-1)2=2n+2.
(2)由(1)得cn=2n+2=an+bn=2×3n-1+bn,
∴bn=(2n+2)-2×3n-1.
∴Sn=[4+6+…+(2n+2)]-2(1+3+32+…+3n-1)
=$\frac{(4+2n+2)n}{2}-\frac{{2(1-{3^n})}}{1-3}$
=n2+3n-3n+1,
∴數(shù)列{bn}的前n項和Sn=n2+3n-3n+1.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | $2\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$,6 | B. | $\frac{1}{3}$,-6 | C. | 3,-2 | D. | 3,6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $3\sqrt{2}$ | B. | 3 | C. | $4\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com