12.已知A為橢圓$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1上的點(diǎn),點(diǎn)B坐標(biāo)為(2,1),有$\overrightarrow{AP}=2\overrightarrow{PB}$,求點(diǎn)P的軌跡方程.

分析 設(shè)出點(diǎn)P(x,y)和點(diǎn)A(a,b),由$\overrightarrow{AP}$=2$\overrightarrow{PB}$,得到這兩個(gè)坐標(biāo)的關(guān)系,再根據(jù)A點(diǎn)在橢圓上,滿足橢圓方程,即可得x,y的關(guān)系,亦即軌跡方程.

解答 解:設(shè)點(diǎn)A的坐標(biāo)(a,b),點(diǎn)P的坐標(biāo)為(x,y),
∵$\overrightarrow{AP}=2\overrightarrow{PB}$,B(2,1),
∴(x-a,y-b)=2(2-x,1-y),
∴x-a=4-2x,y-b=2-2y,
∴a=3x-4,b=3y-2,
∵A為橢圓$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1上的點(diǎn),∴$\frac{{a}^{2}}{25}$+$\frac{^{2}}{16}$=1,
∴化簡(jiǎn)得點(diǎn)P的軌跡方程為$\frac{9}{25}$(x-$\frac{4}{3}$)2+$\frac{9}{16}$(y-$\frac{2}{3}$)2=1.

點(diǎn)評(píng) 在求解軌跡方程的問(wèn)題時(shí),一般都是“求什么設(shè)什么”的方法,再利用題中的條件列出等式即可得到軌跡方程,這也是高考中學(xué)生值得注意的一個(gè)知識(shí)點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.與圓x2+y2-10x-8y+25=0相內(nèi)切,且與兩條坐標(biāo)軸都相切的圓的方程為(x-5)2+(y-5)2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)f′(x)=k,求$\underset{lim}{x→∞}$[f(x+a)-f(x)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知拋物線方程y2=2px(p>0),AB是過(guò)焦點(diǎn)F的一條弦,點(diǎn)A(x1,y1),B(x2,y2).求證:
(1)y1y2=-p2,x1x2=$\frac{{p}^{2}}{4}$;
(2)|AB|=x1+x2+p=$\frac{2p}{si{n}^{2}θ}$(θ為直線AB的傾斜角).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若某幾何體的三視圖如圖所示,其中A1M:AM=7:5.則此幾何體的體積等于(  )
A.55B.62C.65D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.不等式tanx>a在x∈(-$\frac{π}{4},\frac{π}{2}$)上恒成立,則a的取值范圍( 。
A.a>1B.a≤1C.a<-1D.a≤-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知{$\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}$}是空間的一個(gè)單位正交基地,且$\overrightarrow{OA}=\overrightarrow{i}+3\overrightarrow{k}$,$\overrightarrow{OB}=2\overrightarrow{j}$,則△OAB(O為坐標(biāo)原點(diǎn))的面積是(  )
A.$\frac{\sqrt{10}}{2}$B.$\sqrt{10}$C.$\frac{\sqrt{35}}{2}$D.$\sqrt{35}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.點(diǎn)($\sqrt{2}$,2)在冪函數(shù)f(x)的圖象上,點(diǎn)(-2,$\frac{1}{4}$)在冪函數(shù)g(x)的圖象上.
(1)判斷f(x)與g(x)的奇偶性;
(2)設(shè)h(x)=($\frac{1}{3}$)f(x),是否存在x1∈R,x2∈(0,1],使h(x1)=g(x2)?若存在,求x1,x2的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若f(x)是冪函數(shù)且函數(shù)圖象經(jīng)過(guò)點(diǎn)(2,2),g(x)=$\frac{a}{x}$(a>0).
(1)求f(x)的解析式;
(2)若h(x)=f(x)+g(x)在($\sqrt{2}$,+∞)上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案