4.sin40°cos20°-cos220°sin20°=$\frac{\sqrt{3}}{2}$.

分析 利用誘導公式可得cos220°=-cos40°,利用兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值即可化簡求值得解.

解答 解:∵cos220°=cos(180°+40°)=-cos40°,
∴sin40°cos20°-cos220°sin20°
=sin40°cos20°+cos40°sin20°
=sin(40°+20°)
=sin60°
=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點評 本題主要考查了誘導公式,兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.若函數(shù)f(x)=$\sqrt{3}sin2x+2{cos^2}$x+m在區(qū)間$[0,\frac{π}{2}]$上的最小值為3,求常數(shù)m的值及此函數(shù)當x∈[a,a+π](其中a可取任意實數(shù))時的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.一個盒子中裝有 1個黑球和2個白球,這3個球除顏色外完全相同,有放回地連續(xù)抽取2次,每次從中任意地取出1個球.計算下列事件的概率:
(1)取出的兩個球都是白球;
(2)第一次取出白球,第二次取出黑球;
(3)取出的兩個球中至少有一個白球.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設變量x,y滿足約束條件:$\left\{\begin{array}{l}y≥x\\ x+2y≤2\\ x≥-2\end{array}\right.$,則z=2x+y的最小值是-6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知角α的頂點在原點,始邊與x軸的非負半軸重合,終邊交以原點為圓心的單位圓于點A,將角α的終邊按逆時針方向旋轉$\frac{π}{6}$后交此單位圓于點B,記A(x1,y1),B(x2,y2),若A(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),則x2的值為(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)(x∈R)的部分圖象如圖所示.(Ⅰ)求函數(shù)f(x)的解析式并求函數(shù)f(x)的單調遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)的最小值并指出函數(shù)f(x)取最小值時相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,正方體ABCD-A1B1C1D1中,點P在側面BCC1B1及其邊界上運動,并且總是保持AP⊥BD1,試證明動點P在線段B1C上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.復數(shù)z=$\frac{(1-i)^{2}}{3+i}$的所對應的點位于復平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.直線y=x+m與雙曲線2x2-y2=2交于A,B兩點,若以AB為直徑的圓過原點,求m的值及弦AB的長.

查看答案和解析>>

同步練習冊答案