18.若$\overrightarrow{a}$,$\overrightarrow$為非零向量,求證:||$\overrightarrow{a}$|-|$\overrightarrow$||≤|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|,并說明取等號的條件.

分析 分向量共線與不共線的情況,利用向量加法、減法的三角形法則做出圖形,結(jié)合三角形的邊的關(guān)系:“兩邊之和大于第三邊,兩邊之差小于第三邊”進行證明.

解答 證明:分三種情況考慮.
(1)當(dāng)a、b共線且方向相同時,|a|-|b|<|a+b|=|a|+|b|,|a|-|b|=|a-b|<|a|+|b|.
(2)當(dāng)a、b共線且方向相反時,
∵a-b=a+(-b),a+b=a-(-b),
利用(1)的結(jié)論有||a|-|b||<|a+b|<|a|+|b|,|a|-|b|<|a-b|=|a|+|b|.
(3)當(dāng)a,b不共線時,設(shè)$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b,作$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$=a+b,$\overrightarrow{BA}$=$\overrightarrow{OA}$-$\overrightarrow{OB}$=a-b,
利用三角形兩邊之和大于第三邊,兩邊之差小于第三邊,得||a|-|b||<|a±b|<|a|+|b|.
綜上得證.

點評 本題主要考查了平面向量的共線與不共線時兩向量和(或差)的模與向量模的和(或差)的大小關(guān)系,解決問題的關(guān)鍵是要熟練運用向量的加法及減法的三角形法則(平行四邊形法則).分類討論的數(shù)學(xué)思想要注意掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=2cos2(x+$\frac{π}{8}$)-2sin(x+$\frac{π}{8}$)cos(x+$\frac{π}{8}$)-1的最大值是( 。
A.$\sqrt{2}$B.2C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在平面四邊形ABCD中,AB⊥AD,AB=1,AC=$\sqrt{7}$,∠ABC=$\frac{2π}{3}$,∠ACD=$\frac{π}{3}$.
(Ⅰ)求sin∠BAC;
(Ⅱ)求DC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=ax3+3x2+(a-2)x-1在區(qū)間(-∞,+∞)上是減函數(shù),則實數(shù)a的取值范圍是(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知對稱中心為原點O的橢圓C的上頂點為A,右焦點為F,B($\frac{4}{3}$,$\frac{3}$)是C上的一點,且橢圓C的離心率為$\frac{\sqrt{2}}{2}$.
(1)求橢圓C的方程;
(2)若P、Q是橢圓C上異于頂點的兩動點,且∠POQ=90°,求證:直線PQ與一定圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(α>b>0)的右焦點到直線x-y+3$\sqrt{2}$=0的距離為5,且橢圓的一個長軸端點與一個短軸端點間的距離為$\sqrt{10}$.
(1)求橢圓C的方程;
(2)在x軸上是否存在點Q,使得過Q的直線與橢圓C交于A、B兩點,且滿足$\frac{1}{Q{A}^{2}}$+$\frac{1}{Q{B}^{2}}$為定值?若存在,請求出定值,并求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.銳角△ABC中,a+b=2c(cosA+cosB)且c=$\sqrt{3}$,則ab的取值范圍是(0,3$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=x2log2(x+$\sqrt{x^2+m}$)為奇函數(shù),則m=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知θ為第四象限角,sinθ+3cosθ=1,則tanθ=-$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊答案