18.已知?ABCD的頂點A(-1,3),B(0,6),c(-2,1),求頂點D的坐標.

分析 設D(x,y),根據(jù)$\overrightarrow{AB}=\overrightarrow{DC}$列方程解出.

解答 解:設D(x,y),則$\overrightarrow{AB}$=(1,3),$\overrightarrow{DC}$=(-2-x,1-y).
∵四邊形ABCD是平行四邊形,
∴$\overrightarrow{AB}=\overrightarrow{DC}$,
∴$\left\{\begin{array}{l}{-2-x=1}\\{1-y=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$.
∴頂點D的坐標為(-1,-2).

點評 本題考查了平面向量幾何意義與坐標運算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.已知F1,F(xiàn)2分別為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,Q為橢圓C上的一點,且△QF1O(O為坐標原點)為正三角形,若射線QF1與橢圓交于點P,則△QF1F2與△PF1F2的面積的比值是$\frac{3+2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{4x-y+1≥0}\end{array}\right.$,則目標函數(shù)z=$\frac{y+1}{x+3}$的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若f(x)=ex+ae-x為偶函數(shù),則f(x-1)<$\frac{{e}^{2}+1}{e}$的解集為(0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知a>0,b>0,則$\frac{a+b}{2}$,$\sqrt{ab}$,$\sqrt{\frac{{a}^{2}+^{2}}{2}}$,$\frac{2ab}{a+b}$中最小的是( 。
A.$\frac{a+b}{2}$B.$\sqrt{ab}$C.$\sqrt{\frac{{a}^{2}+^{2}}{2}}$D.$\frac{2ab}{a+b}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知等差數(shù)列{an}的前n項和為Sn,a1=1,若S10=S15,則Sn取最大值時的n的取值為( 。
A.12B.13C.12或13D.13或14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設f(n)=($\frac{1+i}{1-i}$)n+($\frac{1-i}{1+i}$)n(n∈N*),則集合{f(n)}中元素的個數(shù)為( 。
A.1B.2C.3D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0),滿足對任意f(x1)=f(x2)=0.都有|x1-x2|≥$\frac{π}{2}$,把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個單位,得到函數(shù)g(x)的圖象,關于函數(shù)g(x),下列說法正確的是( 。
A.其圖象關于直線x=-$\frac{π}{4}$對稱B.函數(shù)g(x)是奇函數(shù)
C.在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函數(shù)D.x∈[$\frac{π}{6}$,$\frac{2π}{3}$]時,函數(shù)g(x)的值域是[-2,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知雙曲線$\frac{x^2}{3}-\frac{y^2}{2}=1$的左焦點為F,點P為雙曲線右支上一點,點A滿足$\overrightarrow{AP}•\overrightarrow{AF}=0$,則點A到原點的最近距離為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步練習冊答案