13.已知復(fù)數(shù)z=$\frac{2}{1-i}$+i(i是虛數(shù)單位),則|z|=( 。
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

分析 通過化簡,計(jì)算即可.

解答 解:∵z=$\frac{2}{1-i}$+i=$\frac{2(1+i)}{(1-i)(1+i)}$+i=$\frac{2(1+i)}{1-{i}^{2}}$+i=1+2i,
∴|z|=$\sqrt{1+{2}^{2}}$=$\sqrt{5}$,
故選:D.

點(diǎn)評(píng) 本題考查求復(fù)數(shù)的模,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.點(diǎn)P是△ABC所在的平面外一點(diǎn)P,連結(jié)PA、PB、PC,且有PB=PC=$\sqrt{5}$,AB=AC=2$\sqrt{2}$,∠BAC=90°,G為△PAB的重心.
(1)試判斷直線BG與AC的位置關(guān)系,并說明理由;
(2)記H為AB中點(diǎn),當(dāng)PA=$\sqrt{5}$時(shí),求直線HG與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知定義在區(qū)間[a,a+2]上的奇函數(shù)y=f(x),當(dāng)0<x≤a+2時(shí),f(x)=$\frac{1}{4}$(x-1).若方程f(x)=x3+cx恰有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)c的取值范圍為$c=-\frac{1}{2}$或c<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四邊形ABCD中,已知∠BAD=60°,∠ABC=90°,∠BCD=120°,對(duì)角線AC,BD交于點(diǎn)S,且DS=2SB,P為AC的中點(diǎn).
求證:(Ⅰ)∠PBD=30°;
(Ⅱ)AD=DC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在等差數(shù)列{an}中,a9=$\frac{1}{2}$a12+6,則該數(shù)列的前11項(xiàng)和為132.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,}&{x≤0}\\{x-3+lnx,}&{x>0}\end{array}\right.$的零點(diǎn)個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知xy=1,且O<y<$\frac{1}{2}$,則$\frac{{x}^{2}+16{y}^{2}}{x-4y}$的最小值為( 。
A.2$\sqrt{2}$B.$\frac{17}{3}$C.4$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽出了一個(gè)容量為n的樣本,其頻率分布直方圖如右圖所示,其中支出在[40,50)元的同學(xué)有39人,則n的值為( 。
A.100B.120C.130D.390

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖給出的是計(jì)算$\frac{1}{1}$+$\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{7}$+…+$\frac{1}{2015}$的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是( 。
A.i<1008B.i>1008C.i<1009D.i>1009

查看答案和解析>>

同步練習(xí)冊(cè)答案