19.一個長為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m,如果梯子的頂端下滑1m,則梯子的底端滑動的距離為$\sqrt{51}$-6m.

分析 由題意作出圖象,由勾股定理解三角形可得.

解答 解:依題意作圖,其中AB為墻面,梯子的初始位置為BC,
則BC=10,AB=8,由勾股定理可得AC=$\sqrt{B{C}^{2}-A{B}^{2}}$=6,
當(dāng)梯子的頂端下滑1m到D,則梯子的底端移到E,
則有DE=10,AD=8-1=7,由勾股定理可得AE=$\sqrt{51}$,
∴梯子的底端滑動的距離CE=$\sqrt{51}$-6
故答案為:$\sqrt{51}$-6.

點(diǎn)評 本題考查解三角形,作出圖象解三角形是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≥0}\\{x≤1}\end{array}\right.$,則2x-y的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=cos(ωx+$\frac{π}{6}$)(0<ω<2)在($\frac{π}{2}$,π)上單調(diào)遞增,則ω的取值范圍是[$\frac{5}{3}$,$\frac{11}{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x(x-1),x≥0}\\{-\frac{1}{3}x(x-1),x<0}\end{array}\right.$.
(1)求函數(shù)f(x)在區(qū)間[b,2](b<2)上的最小值;
(2)是否存在區(qū)間[m,n](m<n),使得函數(shù)f(x)的定義域和值域都為[m,n],若存在寫出滿足條件的所有區(qū)間[m,n],若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,若sinA:sinB=2:3,則$\frac{a+b}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+6≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=x-y的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知:cosx=-$\frac{\sqrt{3}}{2}$,($\frac{π}{2}$<x<π),則x等于$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=2sin2x-2cos2x(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)取得最大值時x的集合;
(3)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=2ax+lnx的圖象經(jīng)過點(diǎn)P(1,3),則a=$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案