8.已知函數(shù)f(x)=x3-x2-x+a的圖象與x軸只有一個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1)∪(-$\frac{1}{9}$,+∞)B.(-$\frac{5}{27}$,1)C.(-∞,1)D.(-∞,-$\frac{5}{27}$)∪(1,+∞)

分析 求出導(dǎo)數(shù),求出單調(diào)區(qū)間,求出極值,曲線f(x)與x軸僅有一個(gè)交點(diǎn),可轉(zhuǎn)化成f(x)極大值<0或f(x)極小值>0即可.

解答 解:函數(shù)f(x)=x3-x2-x+a的導(dǎo)數(shù)為f′(x)=3x2-2x-1,
當(dāng)x>1或x<-$\frac{1}{3}$時(shí),f′(x)>0,f(x)遞增;
當(dāng)-$\frac{1}{3}$<x<1時(shí),f′(x)<0,f(x)遞減.
即有f(1)為極小值,f(-$\frac{1}{3}$)為極大值.
∵f(x)在(-∞,-$\frac{1}{3}$)上單調(diào)遞增,
∴當(dāng)x→-∞時(shí),f(x)→-∞;
又f(x)在(1,+∞)單調(diào)遞增,當(dāng)x→+∞時(shí),f(x)→+∞,
∴當(dāng)f(x)極大值<0或f(x)極小值>0時(shí),曲線f(x)與x軸僅有一個(gè)交點(diǎn).
即a+$\frac{7}{25}$<0或a-1>0,
∴a∈(-∞,-$\frac{7}{25}$)∪(1,+∞),
故選:D.

點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.邊長(zhǎng)為$4\sqrt{2}$的正方形ABCD的四個(gè)頂點(diǎn)在半徑為5的球O的表面上,則四棱錐O-ABCD的體積是32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在等腰三角形ABC中,∠A=150°,AB=AC=1,則$\overrightarrow{AB}•\overrightarrow{BC}$=( 。
A.$-\frac{{\sqrt{3}}}{2}-1$B.$-\frac{{\sqrt{3}}}{2}+1$C.$\frac{{\sqrt{3}}}{2}-1$D.$\frac{{\sqrt{3}}}{2}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在四棱錐P-ABCD中,四條側(cè)棱長(zhǎng)均為2,底面ABCD為正方形,E為PC的中點(diǎn).若異面直線PA與BE所成的角為45°,則四棱錐的體積是( 。
A.4B.2$\sqrt{3}$C.$\frac{4}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的右焦點(diǎn)為F,P是橢圓上一點(diǎn),點(diǎn)$A({0,2\sqrt{3}})$,當(dāng)△APF的周長(zhǎng)最大時(shí),△APF的面積等于( 。
A.$\frac{{11\sqrt{3}}}{4}$B.$\frac{{21\sqrt{3}}}{4}$C.$\frac{11}{4}$D.$\frac{21}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若sin(θ-$\frac{π}{3}$)=$\frac{1}{3}$,0<θ<π,則cosθ=( 。
A.$\frac{-\sqrt{3}+2\sqrt{2}}{6}$B.$\frac{\sqrt{3}+2\sqrt{2}}{6}$C.$\frac{-\sqrt{3}±2\sqrt{2}}{6}$D.$\frac{\sqrt{3}±2\sqrt{2}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,一貨輪航行到M處,測(cè)得燈塔S在貨輪的北偏東15°,與燈塔S相距20n mile,隨后貨輪按北偏西30°的方向航行30min后,又測(cè)得燈塔在貨輪的東北方向,則貨輪的速度為(  )
A.20($\sqrt{2}$+$\sqrt{6}$)n mile/hB.20($\sqrt{6}$-$\sqrt{2}$)n mile/hC.20($\sqrt{3}$+$\sqrt{6}$)n mile/hD.20($\sqrt{6}$-$\sqrt{3}$)n mile/h

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在平面直角坐標(biāo)系xOy中,以點(diǎn)(2,1)為圓心且與直線mx+y-2m=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為(x-2)2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.電視臺(tái)在球賽中場(chǎng)休息時(shí)間插播5個(gè)不同的廣告,其中某兩個(gè)廣告必須相鄰播出,求這5個(gè)廣告不同的播出順序共有幾種?

查看答案和解析>>

同步練習(xí)冊(cè)答案