A. | $\frac{{11\sqrt{3}}}{4}$ | B. | $\frac{{21\sqrt{3}}}{4}$ | C. | $\frac{11}{4}$ | D. | $\frac{21}{4}$ |
分析 利用橢圓的定義,確定△APF周長最大時,P縱坐標(biāo),即可求出△APF周長最大時,該三角形的面積.
解答 解:橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的a=3,b=$\sqrt{5}$,c=$\sqrt{{a}^{2}-^{2}}$=2,
由題意,設(shè)F′是左焦點(diǎn),
則△APF周長=|AF|+|AP|+|PF|=|AF|+|AP|+2a-|PF′|=4+6+|PA|-|PF′|
≤10+|AF′|(A,P,F(xiàn)′三點(diǎn)共線時,且P在AF′的延長線上,取等號),
直線AF′的方程為$\frac{x}{-2}$+$\frac{y}{2\sqrt{3}}$=1與橢圓5x2+9y2=45,
聯(lián)立可得32y2-20$\sqrt{3}$y-75=0,
解得P的縱坐標(biāo)為-$\frac{5\sqrt{3}}{8}$,
則△APF周長最大時,
該三角形的面積為$\frac{1}{2}$|FF′|•|yA-yP|
=2•|2$\sqrt{3}$+$\frac{5\sqrt{3}}{8}$|=$\frac{21\sqrt{3}}{4}$.
故選:B.
點(diǎn)評 本題考查橢圓的定義,以及三點(diǎn)共線時取得最值,同時考查三角形面積的計算,確定P的坐標(biāo)是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30尺 | B. | 90尺 | C. | 150尺 | D. | 180尺 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1)∪(-$\frac{1}{9}$,+∞) | B. | (-$\frac{5}{27}$,1) | C. | (-∞,1) | D. | (-∞,-$\frac{5}{27}$)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com