15.曲線y=$\sqrt{x}$和x2+y2=2及x軸所圍成的封閉圖形的面積是(  )
A.$\frac{1}{6}+\frac{π}{8}$B.$\frac{1}{3}+\frac{π}{4}$C.$\frac{1}{6}+\frac{π}{4}$D.$\frac{1}{3}+\frac{π}{8}$

分析 首先求出曲線的交點(diǎn),S陰影=S扇形0AC-S三角形OBA+S曲多邊形OBA,分別求出其面積,問(wèn)題得以解決.

解答 解:曲線y=$\sqrt{x}$和x2+y2=2及x軸所圍成的封閉圖形的面積如圖陰影部所示
由$\left\{\begin{array}{l}{y=\sqrt{x}}\\{{x}^{2}+{y}^{2}=2}\end{array}\right.$,解得x=1,y=1,即A(1,1),B(1,0),
因?yàn)镾曲多邊形OBA=${∫}_{0}^{1}$$\sqrt{x}$dx=$\frac{2}{3}{x}^{\frac{3}{2}}$|${\;}_{0}^{1}$=$\frac{2}{3}$,
S三角形OBA=$\frac{1}{2}$×1×1=$\frac{1}{2}$,
S扇形0AC=$\frac{45°}{360}$π×2=$\frac{π}{4}$,
∴S陰影=S扇形0AC-S三角形OBA+S曲多邊形OBA=$\frac{π}{4}$-$\frac{1}{2}$+$\frac{2}{3}$=$\frac{π}{4}$+$\frac{1}{6}$,
故選:C.

點(diǎn)評(píng) 本題考查了利用定積分求陰影部分的面積,關(guān)鍵是利用定積分表示面積,屬于常規(guī)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=e4x+x3+x.
(1)求f′(0);
(2)計(jì)算定積分${∫}_{0}^{1}$(f(x)-e4x)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知等差數(shù)列{an}的首項(xiàng)為1,等比數(shù)列{bn}的前兩項(xiàng)為a2,a5且公比為3,記數(shù)列{an}的前n項(xiàng)和為An,數(shù)列{bn}的前n項(xiàng)和為Bn
(I)求An,Bn;
(Ⅱ)如果$\frac{{a}_{n}}{{A}_{n}}$≥$\frac{_{n}}{{B}_{n}}$,試求所有正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.一張儲(chǔ)蓄卡的密碼共有6位數(shù),每位數(shù)字都可從0~9中任選,某人在銀行自動(dòng)提款機(jī)上取錢(qián)時(shí),忘記了密碼的最后一位數(shù)字,求;
(1)第一次不對(duì)的情況下,第二次按對(duì)的概率;
(2)任意按最后一位數(shù)字,按兩次恰好按對(duì)的概率;
(3)他記得密碼的最后一位是偶數(shù),不超過(guò)2次就按對(duì)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)f(x)=|x2-a|-ax-1(a∈R).
(I)若函數(shù)y=f(x)在R上恰有四個(gè)不同的零點(diǎn),求a的取值范圍;
(Ⅱ)若函數(shù)y=f(x)在[1,2]上的最小值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是兩個(gè)不共線的向量.若$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+10$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=-2$\overrightarrow{{e}_{1}}$+8$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=3($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$),試證:A,B,D三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)復(fù)數(shù)z=$\frac{2}{1+i}$+(1-i)2,則z的模為$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若平面向量$\overrightarrow{a}$=(2,-4)與$\overrightarrow$垂直,則|$\overrightarrow$|=$\sqrt{5}$,則$\overrightarrow$的坐標(biāo)為( 。
A.(2,1)B.(-2,-1)C.(2,1)或(-2,-1)D.(2,-1)或(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A、B是非空集合且A⊆B,則下列說(shuō)法錯(cuò)誤的是(  )
A.?x0∈A,x0∈BB.?x0∈A,x0∈BC.A∩B=AD.A∩(∁uB)≠∅

查看答案和解析>>

同步練習(xí)冊(cè)答案