分析 運(yùn)用等差數(shù)列的求和公式可得,an=$\frac{1}{2}$n,化簡(jiǎn)$\frac{1}{{a}_{n+2}{a}_{n+1}{a}_{n}}$=$\frac{8}{n(n+1)(n+2)}$=4[$\frac{1}{n(n+1)}$-$\frac{1}{(n+1)(n+2)}$],再由裂項(xiàng)相消求和即可得到所求.
解答 解:由題意可得an=$\frac{1+2+3+…+n}{n+1}$
=$\frac{\frac{1}{2}n(n+1)}{n+1}$=$\frac{1}{2}$n,
$\frac{1}{{a}_{n+2}{a}_{n+1}{a}_{n}}$=$\frac{8}{n(n+1)(n+2)}$=4[$\frac{1}{n(n+1)}$-$\frac{1}{(n+1)(n+2)}$],
即有前n項(xiàng)和為Sn=4[$\frac{1}{1•2}$-$\frac{1}{2•3}$+$\frac{1}{2•3}$-$\frac{1}{3•4}$+…+$\frac{1}{n(n+1)}$-$\frac{1}{(n+1)(n+2)}$]
=4[$\frac{1}{2}$-$\frac{1}{(n+1)(n+2)}$]=2-$\frac{4}{(n+1)(n+2)}$.
故答案為:2-$\frac{4}{(n+1)(n+2)}$.
點(diǎn)評(píng) 本題考查等差數(shù)列的求和公式的運(yùn)用,考查數(shù)列的求和方法:裂項(xiàng)相消求和,以及化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{5π}{12}$個(gè)單位 | B. | 向左平移$\frac{5π}{36}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{12}$個(gè)單位 | D. | 向左平移$\frac{π}{36}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com