6.公差不為零的遞增等差數(shù)列{an}的前n項和為Sn,若a4=2,S8=32,則log2(a6-a3)=(  )
A.2+$\frac{1}{2}$log32B.2-$\frac{1}{2}$log23C.2+log23D.2+$\frac{1}{3}$log23

分析 設(shè)出等差數(shù)列的公差,由題意列式求得公差,代入log2(a6-a3)得答案.

解答 解:設(shè)等差數(shù)列的公差為d(d>0),
由題意可得:$\left\{\begin{array}{l}{{a}_{1}+3d=2}\\{8{a}_{1}+\frac{8×7d}{2}=32}\end{array}\right.$,解得d=4.
∴l(xiāng)og2(a6-a3)=log23d=log212=2+log23.
故選:C.

點評 本題考查了等差數(shù)列的通項公式,考查了等差數(shù)列的前n項和,考查了對數(shù)的運算性質(zhì),是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.2014年7月18日15時,超強臺風(fēng)“威馬遜”登陸海南。畵(jù)統(tǒng)計,本次臺風(fēng)造成全省直接經(jīng)濟損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟損失,作出如下頻率分布直方圖(如圖):
(Ⅰ)根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失
表一:
經(jīng)濟損失4000元以下經(jīng)濟損失4000元以上合計
捐款超過500元30
捐款低于500元6
合計
(Ⅱ)臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50居民捐款情況如表,在表一空白處填寫正確數(shù)字,并說明是否有95%以上的把握認為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān)?
(Ⅲ)臺風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進行維修,李師傅每天早上在7:00到8:00之間的任意時刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時刻來到小區(qū),求連續(xù)3天內(nèi),有2天李師傅比張師傅早到小區(qū)的概率.
附:臨界值表
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),直線l:$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)寫出曲線C的極坐標方程和直線l在y軸上的截距;
(Ⅱ)過曲線C上任一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義在(0,+∞)上的函數(shù)f(x)滿足:對?x∈(0,+∞),都有f(2x)=2f(x);當(dāng)x∈(1,2]時,f(x)=2-x,給出如下結(jié)論:①對?m∈Z,有f(2m)=0;
②函數(shù)f(x)的值域為[0,+∞);      
③存在n∈Z,使得f(2n+1)=9;
④函數(shù)f(x)在區(qū)間(a,b)單調(diào)遞減的充分條件是“存在k∈Z,使得(a,b)⊆(2k,2k+1),
其中所有正確結(jié)論的序號是:①②④.(請將所有正確命題的序號填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知關(guān)于x不等式|2x-a|-|2x+2a-3|<x2-8x+13有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+(k-1)x-k+$\frac{3}{2}$,g(x)=xlnx.
(Ⅰ)若函數(shù)g(x)的圖象在(1,0)處的切線l與函數(shù)f(x)的圖象相切,求實數(shù)k的值;
(Ⅱ)當(dāng)k=0時,證明:f(x)+g(x)>0;
(Ⅲ)設(shè)h(x)=f(x)+g′(x),若h(x)有兩個極值點x1,x2(x1≠x2),且h(x1)+h(x2)<$\frac{7}{2}$,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一個頂點恰好是拋物線x2=4$\sqrt{3}$y的焦點,且離心率為e=$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過原點的直線與橢圓C交于A,B兩點,過橢圓C的右焦點作直線l∥AB交橢圓C于M,N兩點.試問$\frac{{{{|{AB}|}^2}}}{{|{MN}|}}$是否為定值,若為定值,請求出這個定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.棱長為1的正方體ABCD-A1B1C1D1中,點M,N,P分別為AB1,BC1,DD1的中點,給出下列結(jié)論:
①MN⊥AA1
②直線C1M與平面ABCD所成角的正弦值為$\frac{{\sqrt{5}}}{5}$
③MN⊥BP
④四面體B-DA1C1的體積為$\frac{1}{3}$
則正確結(jié)論的序號為①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2c,離心率為e,左焦點為F,點M($\sqrt{2}$c,$\sqrt{2}$ce)在橢圓C上,O是坐標原點.
(Ⅰ)求e的大。
(Ⅱ)若C上存在點N滿足|FN|等于C的長軸長的$\frac{3}{4}$,求直線ON的方程.

查看答案和解析>>

同步練習(xí)冊答案