11.已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)為6,離心率為$\frac{2}{3}$.則橢圓方程( 。
A.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$$+\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1

分析 由題意,a=3,$\frac{c}{a}$=$\frac{2}{3}$,求出a,b,c,即可求出橢圓方程.

解答 解:由題意,a=3,$\frac{c}{a}$=$\frac{2}{3}$,
∴c=2,
∴b=$\sqrt{5}$,
∴橢圓方程為$\frac{{y}^{2}}{9}+\frac{{x}^{2}}{5}=1$,
故選:A.

點(diǎn)評(píng) 本題考查橢圓方程與性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若a為常數(shù),且a>1,0≤x≤2π,則函數(shù)f(x)=-sin2x+2asinx的最大值為(  )
A.2a+1B.2a-1C.-2a-1D.a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.參數(shù)方程$\left\{\begin{array}{l}{x=\sqrt{t}+1}\\{y=1-2\sqrt{t}}\end{array}\right.$(t為參數(shù))表示什么曲線( 。
A.一個(gè)圓B.一個(gè)半圓C.一條射線D.一條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若“0<x<1是“(x-a)[x-(a+2)]≤0”的充分不必要條件,則實(shí)數(shù)a的取值范圍是( 。
A.[-1,0]B.(-1,0)C.(-∞,0]∪[1,+∞)D.(-∞,-1]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖所示,“嫦娥一號(hào)”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P變軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ繞月飛行.若用2c1和2c2分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸的長(zhǎng),給出下列式子:
①a1+c1=a2+c2; ②a1-c1=a2-c2; ③c1a2>a1c2; ④$\frac{{c}_{1}}{{a}_{1}}$<$\frac{{c}_{2}}{{a}_{2}}$.
其中正確的式子序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.sin660°的值是-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.(1+x)2(1-x)5的展開(kāi)式中x5的系數(shù)-1(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日    期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(°C)1011131286
就診人數(shù)y(個(gè))222529261612
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ) 若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=bx+a;
(Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?
(參考公式:b=$\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\underset{\stackrel{n}{∑}}{i=1}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=ax-$\frac{x}-2lnx{,_{\;}}$f(1)=0
(Ⅰ)若函數(shù)f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍;
(Ⅱ)若函數(shù)f(x)的圖象在x=1處的切線斜率為0,且g(x)=$\frac{1}{{{{(1-x)}^n}}}+\frac{x-1}{2}-\frac{1}{2x-2}-\frac{1}{2}$f(x-1),(x≥2,n∈N*)證明:對(duì)任意的正整數(shù)n,當(dāng)x≥2時(shí),有g(shù)(x)≤x-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案