17.復(fù)數(shù)(1+i)z=1-2i的虛部是( 。
A.$-\frac{3}{2}$B.$-\frac{1}{2}$C.$-\frac{3}{2}i$D.$-\frac{1}{2}i$

分析 把已知的等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:由(1+i)z=1-2i,得$z=\frac{1-2i}{1+i}=\frac{(1-2i)(1-i)}{(1+i)(1-i)}=-\frac{1}{2}-\frac{3}{2}i$,
∴復(fù)數(shù)z的虛部為$-\frac{3}{2}$.
故選:A.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在圓x2+y2=r2中,AB為直徑,C為圓上異于A、B的任意一點,則有kAC•kBC=-1.用類比的方法,對于橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),也能得出類似的結(jié)論:若設(shè)A為橢圓上的任意一點,點A關(guān)于橢圓中心的對稱點為B,點C為橢圓上異于A、B的任意一點,則kAC•kBC=$-\frac{b^2}{a^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖所示,已知∠B=30°,∠A0B=90°,點C在AB上,0C⊥AB,用$\overrightarrow{OA}和\overrightarrow{OB}$來表示向量$\overrightarrow{OC}$,則$\overrightarrow{OC}$等于$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{4}$$\overrightarrow{OB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$f(x)=2sin({2x+\frac{π}{3}})$,則函數(shù)f(x)的最小正周期為π,$f({\frac{π}{6}})$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\sqrt{a{x}^{2}+bx}$,如果對于實數(shù)a的某些值,可以找到相應(yīng)正數(shù)b,使得f(x)的定義域與值域相同,那么符合條件的實數(shù)a的個數(shù)是(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知A(0,0),B(1,0),C(2,1),D(0,3),將四邊形ABCD繞y軸旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知0<α<$\frac{π}{4},\frac{π}{4}<β<\frac{3π}{4},cos(\frac{π}{4}-α)=\frac{3}{5},sin(\frac{3π}{4}+β)=-\frac{5}{13}$,
求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某燈具廠分別在南方和北方地區(qū)各建一個工廠,生產(chǎn)同一種燈具(售價相同),為了了解北方與南方這兩個工廠所生產(chǎn)得燈具質(zhì)量狀況,分別從這兩個工廠個抽查了25件燈具進(jìn)行測試,結(jié)果如下:

(Ⅰ)根據(jù)頻率分布直方圖,請分別求出北方、南方兩個工廠燈具的平均使用壽命;
(Ⅱ)在北方工廠使用壽命不低于600小時的樣本燈具中隨機抽取兩個燈具,求至少有一個燈泡使用壽命不低于700小時的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,若sinA=$\frac{2\sqrt{2}}{3}$,a=2,S△ABC=$\sqrt{2}$,則b+c的值為2$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案