8.如圖所示,已知∠B=30°,∠A0B=90°,點(diǎn)C在AB上,0C⊥AB,用$\overrightarrow{OA}和\overrightarrow{OB}$來(lái)表示向量$\overrightarrow{OC}$,則$\overrightarrow{OC}$等于$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{4}$$\overrightarrow{OB}$.

分析 設(shè)|$\overrightarrow{OA}$|=a,過(guò)C作CD⊥OA,CE⊥OB,垂足分別為D,E,則|OD|=$\frac{\sqrt{3}}{2}$|$\overrightarrow{OC}$|=$\frac{3}{4}$a=$\frac{3}{4}$|$\overrightarrow{OA}$|,|OE|=$\frac{1}{2}$|$\overrightarrow{OC}$|=$\frac{\sqrt{3}}{4}$a=$\frac{1}{4}$|$\overrightarrow{OB}$|,即可得出結(jié)論.

解答 解:設(shè)|$\overrightarrow{OA}$|=a,則|$\overrightarrow{OB}$|=$\sqrt{3}a$,|$\overrightarrow{AB}$|=2a,|$\overrightarrow{OC}$|=$\frac{\sqrt{3}}{2}$a,
過(guò)C作CD⊥OA,CE⊥OB,垂足分別為D,E,則|OD|=$\frac{\sqrt{3}}{2}$|$\overrightarrow{OC}$|=$\frac{3}{4}$a=$\frac{3}{4}$|$\overrightarrow{OA}$|,
|OE|=$\frac{1}{2}$|$\overrightarrow{OC}$|=$\frac{\sqrt{3}}{4}$a=$\frac{1}{4}$|$\overrightarrow{OB}$|,
∴$\overrightarrow{OC}$=$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{4}$$\overrightarrow{OB}$,
故答案為:$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{4}$$\overrightarrow{OB}$.

點(diǎn)評(píng) 本題考查向量知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,將圓沿AB折疊后,圓弧恰好經(jīng)過(guò)圓心,則∠AOB的度數(shù)等于( 。
A.60°B.90°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是棱CC1,BC的中點(diǎn),則直線EF與直線D1C所成角的大小是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.執(zhí)行下面的程序框圖,如果輸入的t=0.01,則輸出的n=( 。
A.$\frac{1}{2}$B.$\frac{1}{2}$C.7D.$-\frac{5}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知拋物線y2=8x的準(zhǔn)線與雙曲線$\frac{x^2}{a^2}-\frac{y^2}{16}$=1相交于A,B兩點(diǎn),點(diǎn)F為拋物線的焦點(diǎn),△ABF為直角三角形,則雙曲線的離心率為( 。
A.3B.2C.$\sqrt{6}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.直線xcos140°+ysin140°-2=0的傾斜角是( 。
A.40°B.50°C.130°D.140°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.將數(shù)列{an}中的所有項(xiàng)按每一行比上一行多兩項(xiàng)的規(guī)則排成如下數(shù)表:
a1
a2 a3 a4
a5 a6 a7 a8 a9

已知表中的第一列數(shù)a1,a2,a5,…構(gòu)成一個(gè)等差數(shù)列,且知a2=4,a10=10.從第二行起,即每一行中的數(shù)按從左到右的順序均構(gòu)成以$\frac{1}{2}$為公比的等比數(shù)列,則a100=$\frac{7}{{2}^{17}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.復(fù)數(shù)(1+i)z=1-2i的虛部是(  )
A.$-\frac{3}{2}$B.$-\frac{1}{2}$C.$-\frac{3}{2}i$D.$-\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知$\overrightarrow{a}$=(-3,2),$\overrightarrow$=(-1,0),向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直,則實(shí)數(shù)λ的值為( 。
A.$\frac{1}{7}$B.-$\frac{1}{7}$C.$\frac{1}{6}$D.-$\frac{1}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案