5.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則a=1,此時(shí)點(diǎn)P的坐標(biāo)為(3,3).

分析 由直線垂直的性質(zhì)得a×1+1×(a-2)=0,由此能求出a,再由直線l1和l2聯(lián)立方程組,能求出點(diǎn)P的坐標(biāo).

解答 解:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,l1⊥l2,
∴a×1+1×(a-2)=0,
解得a=1,
解方程$\left\{\begin{array}{l}{x+y-6=0}\\{x-y=0}\end{array}\right.$,解得x=3,y=3,∴P(3,3).
故答案為:1,(3,3).

點(diǎn)評(píng) 本題考查兩直線垂直時(shí)直線方程中參數(shù)值的求法,考查兩直線交點(diǎn)坐標(biāo)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且a2+c2=b2+ac.
(1)若b=$\sqrt{3}$,sinC=2sinA,求c的值;
(2)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知不等式組$\left\{\begin{array}{l}{x^2}+\sqrt{2}ax+5≥\frac{1}{3}\\{x^2}+\sqrt{2}ax+5≤\frac{7}{2}\end{array}\right.$有唯一解,則實(shí)數(shù)a=±$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知平面向量$\overrightarrow{α}$,$\overrightarrow{β}$($\overrightarrow{α}$≠$\overrightarrow{β}$)滿足|$\overrightarrow{α}$|=$\sqrt{3}$且$\overrightarrow{α}$與$\overrightarrow{β}$-$\overrightarrow{α}$的夾角為150°,則|m$\overrightarrow{α}$+(1-m)$\overrightarrow{β}$|的取值范圍是$[\frac{{\sqrt{3}}}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=${log_{0.5}}(4-3x-{x^2})$的遞增區(qū)間是$(-\frac{3}{2},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(Ⅰ)若l在兩坐標(biāo)軸上的截距相等,求l的方程;
(Ⅱ)若l與兩坐標(biāo)軸圍成的三角形的面積為6,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.用導(dǎo)數(shù)求單調(diào)區(qū)間
f(x)=$\frac{{x}^{2}+3x+1}{{x}^{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.由五個(gè)面圍成的多面體,其中上、下兩個(gè)面是相似三角形,其余三個(gè)面都是梯形,并且這些梯形的腰延長(zhǎng)后能相交于一點(diǎn),則該多面體是(  )
A.三棱柱B.三棱臺(tái)C.三棱錐D.四棱錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若函數(shù)f(x)=$\frac{{x}^{3}}{(2x+1)(x+a)}$為奇函數(shù),則a=-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案