分析 (1)由正弦定理化簡已知可得:c=2a,根據(jù)a2+c2=b2+ac.b=$\sqrt{3}$,即可解得a,c的值.
(2)由余弦定理可求cosB,從而可求sinB,又b=2,a2+c2=b2+ac.解得ac≤4,利用三角形面積公式即可求得△ABC面積的最大值.
解答 解:(1)∵sinC=2sinA,
∴由正弦定理可得:c=2a,
又∵a2+c2=b2+ac.b=$\sqrt{3}$,
∴a2+4a2=3+2a2,
解得:a=1,c=2…6分
(2)由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{ac}{2ac}=\frac{1}{2}$,
∴sinB=$\frac{\sqrt{3}}{2}$,
又∵b=2,a2+c2=b2+ac.
∴4+ac=a2+c2≥2ac,即ac≤4,
∴S△ABC=$\frac{1}{2}acsinB≤\frac{1}{2}×4×\frac{\sqrt{3}}{2}=\sqrt{3}$,當(dāng)且僅當(dāng)a=c=2時等號成立.
故△ABC面積的最大值為$\sqrt{3}$…12分
點評 本題主要考查了正弦定理,余弦定理,三角形面積公式,基本不等式的綜合應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 正三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 圓 | B. | 橢圓 | C. | 雙曲線 | D. | 線段 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com