20.函數(shù)f(x)=${log_{0.5}}(4-3x-{x^2})$的遞增區(qū)間是$(-\frac{3}{2},1)$.

分析 令t=4-3x-x2>0,求得-4<x<1,且f(x)=log0.5t,本題即求函數(shù)t在(-4,1)內(nèi)的減區(qū)間.再利用二次函數(shù)的性質(zhì)可得t在(-4,1)內(nèi)的減區(qū)間.

解答 解:令t=4-3x-x2>0,求得-4<x<1,且f(x)=log0.5t,
故本題即求函數(shù)t在(-4,1)內(nèi)的減區(qū)間.
再利用二次函數(shù)的性質(zhì)可得t在(-4,1)內(nèi)的減區(qū)間為(-$\frac{3}{2}$,1),
故答案為:(-$\frac{3}{2}$,1).

點評 本題主要考查復(fù)合函數(shù)的單調(diào)性,對數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,角A,B,C的對邊分別為a,b,c,cos2$\frac{A}{2}$=$\frac{b+c}{2c}$,則△ABC的形狀一定是( 。
A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=A(sin\frac{x}{2}cosφ+cos\frac{x}{2}sinφ)(A>0,0<φ<\frac{π}{2})$的最大值是2,且f(0)=1.
(Ⅰ)求φ的值;
(Ⅱ)已知銳角△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若a=2,f(2A)=$\sqrt{3}$,2bsinC=$\sqrt{2}$c.求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實數(shù)x、y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$則目標(biāo)函數(shù)$z=\frac{y+2}{x-5}$的最大值為(  )
A.3B.4C.-3D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)f(x)=ex-a(x+1).(e是自然對數(shù)的底數(shù))
(Ⅰ)若f(x)≥0對一切x≥-1恒成立,求a的取值范圍;
(Ⅱ)求證:($\frac{2015}{2016}$)1008$<\frac{1}{\sqrt{e}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則a=1,此時點P的坐標(biāo)為(3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,正方形ABCD中,E、F、G分別是AB、CD、AD的中點,將ABCD沿EF折起,使FG⊥BG.
(Ⅰ)證明:EB⊥平面AEFD;
(Ⅱ)求二面角G-BF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.計算:
(1)3-2+$({2\frac{7}{9}})^{\frac{1}{2}}$-${(\sqrt{2}-1)}^{0}$;
(2)${5}^{l{og}_{5}9}$+$\frac{1}{2}$log232-log3(log28)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,E是PC上的動點,當(dāng)PE=$\frac{1}{2}$PC時,PA∥平面BDE.

查看答案和解析>>

同步練習(xí)冊答案