【題目】光明超市某種商品11月份(30天,11月1日為第一天)的銷售價格P(單位:元)與時間t(單位:天,其中)組成有序實數(shù)對(t,P),點(t,P)落在如圖所示的線段上.該商品日銷售量Q(單位:件)與時間t(單位:天,其中t∈N)滿足一次函數(shù)關系,Q與t的部分數(shù)據(jù)如表所示.
第t天 | 10 | 17 | 21 | 30 |
Q(件) | 180 | 152 | 136 | 100 |
(1)根據(jù)圖象寫出銷售價格與時間t的函數(shù)關系式P=f(t).
(2)請根據(jù)表中數(shù)據(jù)寫出日銷售量Q與時間t的函數(shù)關系式Q=g(t).
(3)設日銷售額為M(單位:元),請求出這30天中第幾日M最大,最大值為多少?
【答案】
(1)解:設f(t)=kt+b,由圖象過點(0,14),(30,29)得:
∴
(2)解:由t,Q滿足一次函數(shù)關系可設g(t)=at+m
由表格可得:
∴Q=g(t)=﹣4t+220(1≤t≤30,t∈N)
(3)解:
∵t∈N
∴當t=13或t=14時,M有最大值,
且最大值為3444元.
答:這30天中第13日或第14日M最大,最大值為3444元.
【解析】1、由數(shù)形結合可求出一次函數(shù)的解析式,特別注意函數(shù)的定義域。
2、本題考查的是用待定系數(shù)法求一次函數(shù)的解析式。
3、本題考查的是由配方法求二次函數(shù)的最值問題,t∈N∴當t=13或t=14時,M有最大值,且最大值為3444元.
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}滿足a1=1,a2=2,an+2=2an+1﹣an+2. (Ⅰ)設bn=an+1﹣an , 證明{bn}是等差數(shù)列;
(Ⅱ)求{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知圓C1的參數(shù)方程為 (φ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C2的極坐標方程為ρ=2 cos(θ﹣ ). (Ⅰ)將圓C1的參數(shù)方程他為普通方程,將圓C2的極坐標方程化為直角坐標方程;
(Ⅱ)圓C1 , C2是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在[﹣3,3]上的增函數(shù)f(x)滿足f(﹣x)=﹣f(x),且f(m+1)+f(2m﹣1)>0,求實數(shù)m的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com