【題目】如圖1,一藝術(shù)拱門由兩部分組成,下部為矩形,的長分別為和,上部是圓心為的劣弧,.
(1)求圖1中拱門最高點到地面的距離;
(2)現(xiàn)欲以B點為支點將拱門放倒,放倒過程中矩形所在的平面始終與地面垂直,如圖2、圖3、圖4所示.設(shè)與地面水平線所成的角為.記拱門上的點到地面的最大距離為,試用的函數(shù)表示,并求出的最大值.
【答案】(1)拱門最高點到地面的距離為.(2),其最大值為
【解析】
(1)求出圓的半徑,結(jié)合圓和RT△的性質(zhì)求出拱門最高點到地面的距離即可;
(2)通過討論P點所在的位置以及三角函數(shù)的性質(zhì)求出h的最大值即可.
(1)如圖,過作與地面垂直的直線交于點,交劣弧于點,的
長即為拱門最高點到地面的距離.
在中,,,
所以,圓的半徑.
所以.
答:拱門最高點到地面的距離為.
(2)在拱門放倒過程中,過點作與地面垂直的直線與“拱門外框上沿”相交于點.
當點在劣弧上時,拱門上的點到地面的最大距離等于圓的半徑長與圓心到地面距離之和;
當點在線段上時,拱門上的點到地面的最大距離等于點到地面的距離.
由(1)知,在中,.
以為坐標原點,直線為軸,建立如圖所示的坐標系.
當點在劣弧上時,.
由,,
由三角函數(shù)定義,
得 ,
則.
所以當即時,
取得最大值.
當點在線段上時,.設(shè),在中,
,
.
由,得.
所以 .
又當時,.
所以在上遞增.
所以當時,取得最大值.
因為,所以的最大值為.
綜上,藝術(shù)拱門在放倒的過程中,拱門上的點到地面距離的最大值為().
科目:高中數(shù)學 來源: 題型:
【題目】2018年6月份上合峰會在青島召開,面向高校招募志愿者,中國海洋大學海洋環(huán)境學院的8名同學符合招募條件并審核通過,其中大一、大二、大三、大四每個年級各2名.若將這8名同學分成甲乙兩個小組,每組4名同學,其中大一的兩名同學必須分到同一組,則分到乙組的4名同學中恰有2名同學是來自于同一年級的分組方式共有__________種.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個函數(shù),如果對任意一個三角形,只要它的三邊長、、都在的定義域內(nèi),就有、、也是某個三角形的三邊長,則稱為“保三角形函數(shù)”.
(1)若是定義在上的周期函數(shù),且值域為,證明:不是保三角形函數(shù);
(2)若是保三角形函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,將寬和長都分別為x,的兩個矩形部分重疊放在一起后形成的正十字形面積為注:正十字形指的是原來的兩個矩形的頂點都在同一個圓上,且兩矩形長所在的直線互相垂直的圖形,
求y關(guān)于x的函數(shù)解析式;
當x,y取何值時,該正十字形的外接圓面積最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】由數(shù)字1,2,3,4,5,6組成沒有重復數(shù)字的三位數(shù),偶數(shù)共有______個,其中個位數(shù)字比十位數(shù)字大的偶數(shù)共有______個.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司新上一條生產(chǎn)線,為保證新的生產(chǎn)線正常工作,需對該生產(chǎn)線進行檢測,現(xiàn)從該生產(chǎn)線上隨機抽取100件產(chǎn)品,測量產(chǎn)品數(shù)據(jù),用統(tǒng)計方法得到樣本的平均數(shù),標準差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估值.
(1)從該生產(chǎn)線加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為X,依據(jù)以下不等式評判(P表示對應事件的概率)
①
②
③
評判規(guī)則為:若至少滿足以上兩個不等式,則生產(chǎn)狀況為優(yōu),無需檢修;否則需檢修生產(chǎn)線,試判斷該生產(chǎn)線是否需要檢修;
(2)將數(shù)據(jù)不在內(nèi)的產(chǎn)品視為次品,從該生產(chǎn)線加工的產(chǎn)品中任意抽取2件,次品數(shù)記為Y,求Y的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的右頂點,離心率為,為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知(異于點)為橢圓上一個動點,過作線段的垂線交橢圓于點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國計劃發(fā)射火星探測器,該探測器的運行軌道是以火星(其半徑)的中心為一個焦點的橢圓.如圖,已知探測器的近火星點(軌道上離火星表面最近的點)到火星表面的距離為,遠火星點(軌道上離火星表面最遠的點)到火星表面的距離為.假定探測器由近火星點第一次逆時針運行到與軌道中心的距離為時進行變軌,其中分別為橢圓的長半軸、短半軸的長,求此時探測器與火星表面的距離(精確到).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com