分析 由直線的斜率范圍,得到傾斜角的正切值的范圍,利用正切函數(shù)的單調(diào)性并結(jié)合傾斜角的范圍,最后確定傾斜角的具體范圍.
解答 解:設(shè)直線的傾斜角為α,則α∈[0,π),
由-1≤k≤$\sqrt{3}$,
即-1≤tanα≤$\sqrt{3}$,
當0<tanα≤$\sqrt{3}$,
時,α∈[0,$\frac{π}{3}$];
當-1≤tanα<0時,α∈[$\frac{3π}{4}$,π),
∴α∈[0,$\frac{π}{3}$]∪[$\frac{3π}{4}$,π);
故答案為∈[0,$\frac{π}{3}$]∪[$\frac{3π}{4}$,π).
點評 本題考查傾斜角和斜率的關(guān)系,注意傾斜角的范圍,正切函數(shù)在[0,$\frac{π}{2}$)、($\frac{π}{2}$,π)上都是單調(diào)增函數(shù).
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “?x∈R,x2+3x+2>0” | B. | “?x0∉R,x2+3x+2≤0” | ||
C. | “?x∈R,x2+3x+2≤0” | D. | “?x0∈R,x2+3x+2>0” |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題①和命題②都成立 | B. | 命題①和命題②都不成立 | ||
C. | 命題①成立,命題②不成立 | D. | 命題①不成立,命題②成立 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | -10 | C. | $\frac{1}{5}$ | D. | -$\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com