分析 根據(jù)二項(xiàng)式定理計算a,再根據(jù)定積分的幾何意義和性質(zhì)計算即可.
解答 解:∵${(\frac{a}{{\sqrt{x}}}-x)^6}$展開式的常數(shù)項(xiàng)為15,∴C${\;}_{6}^{2}$($\frac{a}{\sqrt{x}}$)4x2=15,
∴a4=1,又a>0,∴a=1.
∵y=$\sqrt{1-{x}^{2}}$表示半徑為1的上半圓,y=sin2x是奇函數(shù),
∴${∫}_{-1}^{1}\sqrt{1-{x}^{2}}dx$=$\frac{π}{2}$,${∫}_{-1}^{1}sin2xdx$=0,
∴$\int_{-a}^a{(\sqrt{1-{x^2}}+sin2x)dx}$=$\frac{π}{2}+0$=$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.
點(diǎn)評 本題考查了二項(xiàng)式定理,定積分的計算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=tan({2x+\frac{π}{6}})$ | B. | $y=cot({x-\frac{π}{6}})$ | C. | $y=tan({2x-\frac{π}{6}})$ | D. | y=tan2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{24}{29}$ | C. | $\frac{16}{31}$ | D. | $\frac{16}{29}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{3}{8}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com