9.設(shè)O為坐標(biāo)原點(diǎn),已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,拋物線C2:x2=-ay的準(zhǔn)線方程為y=$\frac{1}{2}$.
(1)求橢圓C1和拋物線C2的方程;
(2)設(shè)過定點(diǎn)M(0,2)的直線t與橢圓C1交于不同的兩點(diǎn)P,Q,若O在以PQ為直徑的圓的外部,求直線t的斜率k的取值范圍.

分析 (1)根據(jù)準(zhǔn)線方程計算a,利用離心率計算c,從而得出b;
(2)設(shè)直線t的斜率為k,得出直線t的方程,聯(lián)立方程組消元,根據(jù)根與系數(shù)的關(guān)系計算$\overrightarrow{OP}•\overrightarrow{OQ}$,令$\overrightarrow{OP}•\overrightarrow{OQ}$>0得出k的范圍.

解答 解:(1)∵拋物線C2:x2=-ay的準(zhǔn)線方程為y=$\frac{1}{2}$,
∴$\frac{a}{4}=\frac{1}{2}$,解得a=2
∴拋物線C2的方程為x2=-2y,
∵橢圓C1的離心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,∴c=$\sqrt{3}$,
∴b2=a2-c2=1,
∴橢圓C1的方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(2)當(dāng)直線t無斜率時,O為PQ的中點(diǎn),不符合題意;
當(dāng)直線t有斜率時,設(shè)直線t的方程為y=kx+2,
聯(lián)立方程組$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=kx+2}\end{array}\right.$,消元得:(1+4k2)x2+16kx+12=0.
∵直線t與橢圓交于兩點(diǎn),
∴△=256k2-48(1+4k2)>0,∴k<-$\frac{\sqrt{3}}{2}$或k>$\frac{\sqrt{3}}{2}$,
設(shè)P(x1,y1),Q(x2,y2),則x1+x2=$\frac{-16k}{1+4{k}^{2}}$,x1x2=$\frac{12}{1+4{k}^{2}}$,
∴y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,
∴$\overrightarrow{OP}•\overrightarrow{OQ}$=x1x2+y1y2=$\frac{12(1+{k}^{2})}{1+4{k}^{2}}$-$\frac{32{k}^{2}}{1+4{k}^{2}}$+4=$\frac{16-4{k}^{2}}{1+4{k}^{2}}$.
∵O在以PQ為直徑的圓的外部,∴∠POQ∈(0,$\frac{π}{2}$),∴$\overrightarrow{OP}•\overrightarrow{OQ}$>0,
∴16-4k2>0,解得-2<k<2.
綜上,k的取值范圍是(-2,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,2).

點(diǎn)評 本題考查了圓錐曲線的性質(zhì),直線與圓錐曲線的位置關(guān)系,常利用根與系數(shù)的關(guān)系化簡計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.秦九韶是我國南宋時期的數(shù)學(xué)家,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實(shí)例,若輸入x的值為 2,則輸出v的值為( 。
A.211-1B.211-2C.210-1D.210-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知命題甲是“{x|$\frac{{x}^{2}+x}{x-1}$≥0}”,命題乙是“{x|log3(2x+1)≤0}”,則甲是乙的必要不充分條件.(從充分不必要、必要不充分、充要、既不充分也不必要中選填)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx+bx-c,f(x)在點(diǎn)(1,f(1))處的切線方程為x+y+4=0.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)在定義域內(nèi)恒有f(x)≥2lnx+kx成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.把邊長為1的正方形ABCD沿對角線BD折起,形成的三棱錐A-BCD的正視圖與俯視圖如圖所示,則其側(cè)視圖的面積為$\frac{1}{4}$,二面角B-AC-D的余弦值為$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某出租車租賃公司收費(fèi)標(biāo)準(zhǔn)如下:起價費(fèi)10元(即里程不超過5公里,按10元收費(fèi)),超過5公里,但不超過20公里的部分,每公里按1.5元收費(fèi),超過20公里的部分,每公里再加收0.3元.
(1)請建立租賃綱總價y關(guān)于行駛里程x的函數(shù)關(guān)系式;
(2)某人租車行駛了30公里,應(yīng)付多少錢?(寫出解答過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.由某類事物的部分對象具有某些特征,推出該類事物的全部對象都具有這些特征的推理叫(  )
A.合情推理B.演繹推理C.類比推理D.歸納推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知F1(-4,0),F(xiàn)2(4,0)為橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的兩個焦點(diǎn),P在橢圓上,且△PF1F2的面積為$3\sqrt{3}$,則cos∠F1PF2=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x∈R|x>$\sqrt{π}$),π為圓周率,則( 。
A.2∈AB.2∉AC.2>AD.2?A

查看答案和解析>>

同步練習(xí)冊答案