4.若偶函數(shù)f(x)在[1,+∞)上是減函數(shù),則下列關系式中成立的是(  )
A.f(2)<f(-$\frac{3}{2}$)<f(-1)B.f(-$\frac{3}{2}$)<f(-1)<f(2)C.f(2)<f(-1)<f(-$\frac{3}{2}$)D.f(2)<f(-$\frac{3}{2}$)<f(-1)

分析 根據(jù)函數(shù)奇偶性和單調性的關系進行轉化求解即可.

解答 解:∵偶函數(shù)f(x)在[1,+∞)上是減函數(shù),
∴f(2)<f($\frac{3}{2}$)<f(1),
即f(2)<f(-$\frac{3}{2}$)<f(-1),
故選:D.

點評 本題主要考查函數(shù)值的大小比較,根據(jù) 函數(shù)奇偶性和單調性的關系是解決本題的關鍵.比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.若直線3x-4y-m=0(m>0)與圓(x-3)2+(y-4)2=4相切,則實數(shù)m的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設圓C:x2+y2-2x-2y-m=0與直線y=x-4相切,則圓C的半徑為( 。
A.2$\sqrt{2}-2$B.10C.6D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x+2(x<0)}\\{\sqrt{x}(x≥0)}\end{array}\right.$,若對任意n∈N*,f(f(f…f(a)))=a(n個f),則實數(shù)a的個數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.拋物線x2=2y的焦點坐標為(  )
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},0)$C.(0,1)D.(1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設E,F(xiàn)分別是正方形ABCD中CD、AB邊的中點,將△ADC沿對角線AC對折,使得直線EF與AC異面,記直線EF與平面ABC所成角為α,與異面直線AC所成角為β,則當tanβ=$\frac{1}{2}$時,tanα=( 。
A.$\frac{3\sqrt{5}}{16}$B.$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{51}}{17}$D.$\frac{\sqrt{57}}{19}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某城市在進行規(guī)劃時,準備設計一個圓形的開放式公園,為達到社會和經濟效益雙豐收,園林公司進行如下設計,安排圓內接四邊形ABCD作為綠化區(qū)域,其余作為市民活動區(qū)域,其中△ABD區(qū)域種植花木后出售,△BCD區(qū)域種植草皮后出售,已知草皮每平方米售價為a元,花木每平方米的售價是草皮每平方米售價的三倍,若BC=6km,AD=CD=4km.
(1)若BD=2$\sqrt{7}$km,求綠化區(qū)域的面積;
(2)設∠BCD=θ,當θ取何值時,園林公司的總銷售金額最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,拋物線y=ax2+2x-6與X軸交于點A(-6,0),B(點A在點B的左側),與y軸交于點C,直線BD與拋物線交于點D,點D與點C關于該拋物線的對稱軸對稱.
(1)連接CD,求拋物線的解析式和線段CD的長度;
(2)在線段BD下方的拋物線上有一點P,過點P作PM∥x軸,PN∥y軸,分別交BD于點M,N,當△MPN的面積最大時,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知命題p:方程x2+mx+1=0有兩個不相等的負實根,命題q:不等式x2+(m-2)x+1=0無實根,若p或q為真,p且q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案