分析 根據(jù)條件求出容積的表達(dá)式,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的最值,由導(dǎo)數(shù)可得在x=$\frac{a}{6}$時(shí)函數(shù)V(x)有最大值.
解答 解:由于在邊長(zhǎng)為a的正方形鐵片的四角截去四個(gè)邊長(zhǎng)為x的小正方形,做成一個(gè)無蓋方盒,
所以無蓋方盒的底面是正方形,且邊長(zhǎng)為a-2x,高為x,
則無蓋方盒的容積V(x)=(a-2x)2x,0<x<$\frac{a}{2}$
即V(x)=(a-2x)2x=4x3-4ax2+a2x,0<x<$\frac{a}{2}$;
V′(x)=12x2-8ax+a2=(6x-a)(2x-a),
∴當(dāng)x∈(0,$\frac{a}{6}$)時(shí),V′(x)>0;
當(dāng)x∈($\frac{a}{6}$,$\frac{a}{2}$)時(shí),V′(x)<0;
故x=$\frac{a}{6}$是函數(shù)V(x)的最大值點(diǎn),
即當(dāng)x=$\frac{a}{6}$時(shí),方盒的容積V最大.
故答案為:$\frac{a}{6}$
點(diǎn)評(píng) 本題主要考查生活中的應(yīng)用問題,根據(jù)條件建立函數(shù)關(guān)系,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求函數(shù)的最值是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,3) | B. | (1,3) | C. | (-1,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (1,2)與(2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{8}{5}$ | C. | $\frac{24}{25}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
序號(hào) | 數(shù)學(xué) | 物理 |
A | 60 | 50 |
B | 70 | 40 |
C | 80 | 70 |
D | 90 | 80 |
E | 100 | 80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-y-1=0 | B. | x-y-3=0 | C. | x+y-3=0 | D. | x+y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com