(本題12分)如圖,設(shè)P是圓x2+y2=25上的動點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=|PD|.
(Ⅰ)當(dāng)P在圓上運(yùn)動時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被曲線C所截線段的長度.
(Ⅰ)設(shè)M(x,y),P(xp,yp),由已知得
,即C的方程為:!5分
(Ⅱ)
解析試題分析:(Ⅰ)設(shè)M(x,y),P(xp,yp),由已知得
,即C的方程為:!5分
(Ⅱ) 過點(diǎn)(3,0)且斜率為的直線l為
設(shè)直線l與C的交點(diǎn)為A(), B()
由
………………………………………………………………12分
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系。
點(diǎn)評:容易題,涉及直線與圓錐曲線的位置關(guān)系問題,往往要利用韋達(dá)定理。弦長公式要清楚。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知⊙和點(diǎn).
(Ⅰ)過點(diǎn)向⊙引切線,求直線的方程;
(Ⅱ)求以點(diǎn)為圓心,且被直線截得的弦長為4的⊙的方程;
(Ⅲ)設(shè)為(Ⅱ)中⊙上任一點(diǎn),過點(diǎn)向⊙引切線,切點(diǎn)為. 試探究:平面內(nèi)是否存在一定點(diǎn),使得為定值?若存在,請舉出一例,并指出相應(yīng)的定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)
在極坐標(biāo)系中,已知兩點(diǎn)O(0,0),B(2,).
(1)求以OB為直徑的圓C的極坐標(biāo)方程,然后化成直角方程;
(2)以極點(diǎn)O為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)).若直線l與圓C相交于M,N兩點(diǎn),圓C的圓心為C,求DMNC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知圓.
(1)直線:與圓相交于、兩點(diǎn),求;
(2)如圖,設(shè)、是圓上的兩個(gè)動點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,點(diǎn)關(guān)于軸的對稱點(diǎn)為,如果直線、與軸分別交于和,問是否為定值?若是求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,是⊙的直徑,垂直于⊙所在的平面,是圓周上不同于的一動點(diǎn).
(1)證明:面PAC面PBC;
(2)若,則當(dāng)直線與平面所成角正切值為時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知直線l:y=x,圓C1的圓心為(3,0),且經(jīng)過(4,1)點(diǎn).
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對稱,點(diǎn)A、B分別為圓C1、C2上任意一點(diǎn),求|AB|的最小值;
(3)已知直線l上一點(diǎn)M在第一象限,兩質(zhì)點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位的速度沿x軸正方向運(yùn)動,點(diǎn)Q以每秒個(gè)單位沿射線OM方向運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒.問:當(dāng)t為何值時(shí)直線PQ與圓C1相切?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面直角坐標(biāo)系中O是坐標(biāo)原點(diǎn),,圓是的外接圓,過點(diǎn)(2,6)的直線為。
(1)求圓的方程;
(2)若與圓相切,求切線方程;
(3)若被圓所截得的弦長為,求直線的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com