精英家教網 > 高中數學 > 題目詳情

已知圓滿足以下三個條件:(1)圓心在直線上,(2)與直線相切,(3)截直線所得弦長為6。求圓的方程。

解析試題分析:∵圓心C在直線x-y-1=0上,∴圓心C(a,a-1),又圓
與直線相切,截直線所得弦長為6所以,,解得,,故圓的方程。
考點:點到直線的距離公式,圓的標準方程。
點評:中檔題,求圓的方程,可以根據條件靈活假設出方程的形式,一般地,涉及圓心、半徑時,設標準方程,涉及圓上點的坐標時,設一般形式。本題對計算能力要求較高。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,已知圓心在軸上,半徑為的圓位于軸的右側,且與軸相切,
(Ⅰ)求圓的方程;
(Ⅱ)若橢圓的離心率為,且左右焦點為,試探究在圓上是否存在點,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

有一個不透明的袋子,裝有4個完全相同的小球,球上分別編有數字1,2,3,4,
(1)若逐個不放回取球兩次,求第一次取到球的編號為偶數且兩個球的編號之和能被3整除的概率;
(2)若先從袋中隨機取一個球,該球的編號為a,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為b,求直線ax+by+1=0與圓有公共點的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知直線L:與圓C:,
(1) 若直線L與圓相切,求m的值。
(2) 若,求圓C 截直線L所得的弦長。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系xOy中,己知圓P在x軸上截得線段長為2,在軸上截得線段長為.
(Ⅰ)求圓心P的軌跡方程;
(Ⅱ)若P點到直線y=x的距離為,求圓P的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

直線與圓交于兩點,記△的面積為(其中為坐標原點).
(1)當時,求的最大值;
(2)當,時,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓,直線過定點.
(1)求圓心的坐標和圓的半徑;
(2)若與圓C相切,求的方程;
(3)若與圓C相交于P,Q兩點,求三角形面積的最大值,并求此時的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知:以點C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點O, A,與y軸交于點O, B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設直線y = –2x+4與圓C交于點M, N,若|OM| = |ON|,求圓C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題12分)如圖,設P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且|MD|=|PD|.

(Ⅰ)當P在圓上運動時,求點M的軌跡C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被曲線C所截線段的長度.

查看答案和解析>>

同步練習冊答案