已知函數(shù)f(x)=x3+a且f(-1)=0,則f-1(1)=
 
考點:反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件求得a的值,可得f(x)的解析式,再根據(jù)函數(shù)與反函數(shù)的關(guān)系,令f(x)=1,求得x的值,即為f-1(1)的值.
解答: 解:∵函數(shù)f(x)=x3+a且f(-1)=-1+a=0,∴a=1,函數(shù)f(x)=x3+1.
令x3+1=1,求得 x=0,可得x3+1=0,
故答案為:0.
點評:本題主要考查函數(shù)與反函數(shù)的關(guān)系,注意反函數(shù)的定義域是原函數(shù)的值域,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的中心在坐標(biāo)原點O,其焦點F1,F(xiàn)2在x軸上,離心率e=2,拋物線D的頂點在原點,以x軸為對稱軸,兩曲線在在第一象限內(nèi)相交于點A,且AF1⊥AF2,△AF1F2的面積為3
(Ⅰ)求雙曲線C和拋物線D的方程;
(Ⅱ)一條直線l與雙曲線C的兩支分別交于M,N兩點,且線段MN的中點在拋物線D上,求直線l在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在空間直角坐標(biāo)系A(chǔ)-xyz中,已知斜四棱柱ABCD-A1B1C1D1的底面是邊長為3的正方形,點B,D,B1分別在x,y,z軸上,B1A=3,P是側(cè)棱B1B上的一點,BP=2PB1
(1)寫出點C1,P,D1的坐標(biāo);
(2)設(shè)直線C1E⊥平面D1PC,E在平面ABCD內(nèi),求點E的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是橢圓
x2
a2
+
y2
b2
=1(a>b>0),以M為圓心的圓與x軸相切于橢圓的焦點F,圓M與y軸相交于P,Q兩點,若△PQM是等腰直角三角形,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1+a4=10,O是平面上任意一點,A、B、C三點共線,且滿足
O
A
=an
O
B
-(1+an-1)•
O
C
,則{an}的前10項和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程2x+log23=24,則其根x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且對任意n∈N*,有2Sn=3an-2,則a1=
 
;Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,設(shè)S0=0,Sn=a1+a2+a3+…+an,其中ak=
k,Sk-1<k
-k,Sk-1≥k
,1≤k≤n,k,n∈N*,當(dāng)n≤14時,使Sn=0的n的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的左、右焦點分別為F1、F2,過F1作圓x2+y2=a2的切線分別交雙曲線的左、右兩支于點B、C,且|BC|=|CF2|,則雙曲線的漸近線方程為(  )
A、y=±3x
B、y=±2x
C、y=±(
3
+1)x
D、y=±(
3
-1)x

查看答案和解析>>

同步練習(xí)冊答案