設(shè)M是橢圓
x2
a2
+
y2
b2
=1(a>b>0),以M為圓心的圓與x軸相切于橢圓的焦點(diǎn)F,圓M與y軸相交于P,Q兩點(diǎn),若△PQM是等腰直角三角形,則橢圓的離心率為
 
考點(diǎn):橢圓的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由圓M與x軸相切與焦點(diǎn)F,設(shè)M(c,y),則y=
b2
a
或y=-
b2
a
,所以圓的半徑為
b2
a
,利用△PQM是等腰直角三角形,即可求出橢圓的離心率.
解答: 解:∵圓M與X軸相切于焦點(diǎn)F,
∴不妨設(shè)M(c,y),則(因?yàn)橄嗲,則圓心與F的連線必垂直于x軸)
M在橢圓上,則y=
b2
a
或y=-
b2
a
(a2=b2+c2),
∴圓的半徑為
b2
a
,
∵△PQM為等腰直角三角形,
2
2
×
b2
a
=c,
∴b2=
2
ac,
∴a2-c2=
2
ac,
∴e2+
2
e-1=0,
∵0<e<1,
∴e=
6
-
2
2

故答案為:e=
6
-
2
2
點(diǎn)評:本題考查橢圓的離心率的求解,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:an+2an-an+1=tn(t-1),a1=1,a2=t(t>1,t為常數(shù))
(1)求a3
(2)求證:an+1>an≥1;
(3)求證:{an}滿足an+2-2tan+1+tan=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
4
+
y2
3
=1,直線l的方程為x=4,過右焦點(diǎn)F的直線l′與橢圓交于異于左頂點(diǎn)A的P,Q兩點(diǎn),直線AP,AQ交直線l分別于點(diǎn)M,N.
(Ⅰ)當(dāng)
AP
AQ
=
9
2
時(shí),求此時(shí)直線l′的方程;
(Ⅱ)試問M,N兩點(diǎn)的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,AC與BD交于O點(diǎn),E為PC的中點(diǎn),AD=CD=1,PD=2,DB=2
2

(Ⅰ)證明PA∥平面BDE;
(Ⅱ)證明AC⊥平面PBD;
(Ⅲ)求三棱錐B-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=2cosα+2
y=2sinα
(α為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的極坐標(biāo)方程為ρ(sinθ+cosθ)=1,則直線l被曲線C截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x)•f(x+2)=2014,若f(0)=1,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+a且f(-1)=0,則f-1(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用1、2、3、4、5、6六個數(shù)組成沒有重復(fù)數(shù)字的六位數(shù),其中5、6均排在3的同側(cè),這樣的六位數(shù)共有
 
個(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對應(yīng)的變分別為a,b,c,則“A≤B“是“sinA≤sinB“的( 。l件.
A、充分必要
B、必要不充分
C、充分不必要
D、既不充分也不必要

查看答案和解析>>

同步練習(xí)冊答案