A. | $\frac{4\sqrt{3}}{3}$ | B. | $4\sqrt{3}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $2\sqrt{3}$ |
分析 由題意知OP=OC=OA=OB=4,∠APC=∠BPC=∠ACP=∠BCP=$\frac{π}{4}$,∠PAC=∠PBC=$\frac{π}{2}$,AO⊥PC,BO⊥PC,即可求出棱錐A-PBC的體積.
解答 解:如圖,由題意球O的表面積為16π,可得球的半徑為:2,
知OP=OC=OA=OB=AB=2,
∠APC=∠BPC=∠ACP=∠BCP=$\frac{π}{4}$,∠PAC=∠PBC=$\frac{π}{2}$,
AO⊥PC,BO⊥PC,
∴PC⊥平面AOB,
BP=BC=2$\sqrt{2}$,
∴S△PBC=$\frac{1}{2}×2\sqrt{2}×2\sqrt{2}$=4,
取BO中點(diǎn)D,連結(jié)AD,則AD⊥BO,
又PC⊥面AOB,AD?平面AOB,
∴AD⊥PC,
又BO∩PC=O,
∴AD⊥平面BPC,
∵AD=$\sqrt{3}$,
∴棱錐A-PBC的體積V=$\frac{1}{3}×4×\sqrt{3}$=$\frac{4\sqrt{3}}{3}$.
故選:A.
點(diǎn)評(píng) 本題考查三棱錐的體積的求法,考查學(xué)生的計(jì)算能力,是中檔題,解題時(shí)要認(rèn)真審題,注意球的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{16π}{3}$ | B. | 16π | C. | $\frac{32π}{3}$ | D. | 32π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{2\sqrt{2}}}{5}$ | B. | $\frac{{\sqrt{7}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{10}}}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com