如果cos(π+A)=-
1
2
,那么sin(
π
2
-A)=
 
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:已知等式利用誘導(dǎo)公式化簡(jiǎn)求出cosA的值,所求式子利用誘導(dǎo)公式化簡(jiǎn)后將cosA的值代入計(jì)算即可求出值.
解答: 解:∵cos(π+A)=-cosA=-
1
2
,即cosA=
1
2
,
∴sin(
π
2
-A)=cosA=
1
2

故答案為:
1
2
點(diǎn)評(píng):此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
3
)(其中A>0,ω>0)的振幅為2,周期為π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

采用系統(tǒng)抽樣方法,從123人中抽取一個(gè)容量為12的樣本,則抽樣距為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明結(jié)論“a,b,c至少有一個(gè)是正數(shù)”時(shí),應(yīng)假設(shè)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知PA垂直于正方形ABCD所在平面,連接PB、PC、PD、AC、BD,則下列垂直關(guān)系中正確的序號(hào)是
 

①平面PAB⊥平面PBC  
②平面PAB⊥平面PAD
③平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

植樹(shù)那天,四位同學(xué)植樹(shù),現(xiàn)有3棵不同的樹(shù),若一棵樹(shù)限1人完成,則不同的植樹(shù)方法數(shù)有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=lg
x
2-x
的定義域?yàn)?div id="oy0og00" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(
x
+
2
x
7的展開(kāi)式中含x2的項(xiàng)的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集I=R,M={x|x2>4},N={x|1<x<3},則(CIM)∩N為(  )
A、{x|x<2}
B、{x|1<x≤2}
C、{x|-2≤x<1}
D、{x|-2≤x≤2}

查看答案和解析>>

同步練習(xí)冊(cè)答案