19.已知圓O:x2+y2=4上到直線l:x+y=a的距離等于1的點(diǎn)恰有3個(gè),則實(shí)數(shù)a的值為( 。
A.2$\sqrt{2}$B.$\sqrt{2}$C.-$\sqrt{2}$或$\sqrt{2}$D.-2$\sqrt{2}$或2$\sqrt{2}$

分析 由題意可得圓心(0,0)到直線l:x+y=a的距離d滿足d=1,根據(jù)點(diǎn)到直線的距離公式求出d,再解絕對(duì)值方程求得實(shí)數(shù)a的值.

解答 解:因?yàn)閳A上的點(diǎn)到直線l的距離等于1的點(diǎn)至少有2個(gè),所以圓心到直線l的距離d=1,
即d=$\frac{|-a|}{\sqrt{2}}$=1,解得a=±$\sqrt{2}$.
故選:C.

點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式,絕對(duì)值方程的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={x|x2-3x-4>0},集合B={x|-2<x<5},則A∩B=( 。
A.{x|-1<x<4}B.{x|-2<x<-1或4<x<5}C.{x|x<-1或x>4}D.{x|-2<x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)向量$\overrightarrow{a}$=(2cosx,1),向量$\overrightarrow$=$(\sqrt{3}cosx,\;\;sin2x-\sqrt{3})$,函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)若$α∈(\frac{π}{2},\;π)$,且sinα=$\frac{5}{13}$,求$f(\frac{α}{2})$的值;
(Ⅱ)已知△ABC的三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a=2$\sqrt{3}$,b=3$\sqrt{2}$,f(A)=1,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知以F為焦點(diǎn)的拋物線y2=4x上的兩點(diǎn)A,B滿足$\overrightarrow{AF}$=2$\overrightarrow{FB}$,則弦AB中點(diǎn)到拋物線準(zhǔn)線的距離為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)滿足:在定義域D內(nèi)存在實(shí)數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)為“1的飽和函數(shù)”.給出下列四個(gè)函數(shù):①f(x)=$\frac{1}{x}$;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cos(πx).其中是“1的飽和函數(shù)”的所有函數(shù)的序號(hào)為( 。
A.①③B.②④C.①②D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x-a|,a∈R
(Ⅰ)當(dāng)a=1時(shí),求f(x)≥|x+1|+1的解集;
(Ⅱ)若不等式f(x)+3x≤0的解集包含{x|x≤-1},求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=sin(2x-$\frac{π}{2}$)(x∈R)下列結(jié)論錯(cuò)誤的是( 。
A.函數(shù)f(x)的最小正周期為πB.函數(shù)f(x)是偶函數(shù)
C.函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上是增函數(shù)D.函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知變量x、t滿足約束條件$\left\{\begin{array}{l}{x+2y≥2}\\{2x+y≤4}\\{4x-y≥-1}\end{array}\right.$,則目標(biāo)函數(shù)z=3x-y的最大值是(  )
A.-4B.-$\frac{3}{2}$C.-1D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且$PA=AD=DC=\frac{1}{2}$,AB=1,M是PB的中點(diǎn).
(1)求AC與PB所成的角的余弦值;
(2)求PC與平面AMC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案