7.已知以F為焦點(diǎn)的拋物線y2=4x上的兩點(diǎn)A,B滿足$\overrightarrow{AF}$=2$\overrightarrow{FB}$,則弦AB中點(diǎn)到拋物線準(zhǔn)線的距離為$\frac{9}{4}$.

分析 設(shè)BF=m,由拋物線的定義知AA1和BB1,進(jìn)而可推斷出AC和AB,及直線AB的斜率,則直線AB的方程可得,與拋物線方程聯(lián)立消去y,進(jìn)而跟韋達(dá)定理求得x1+x2的值,則根據(jù)拋物線的定義求得弦AB的中點(diǎn)到準(zhǔn)線的距離.

解答 解:設(shè)BF=m,由拋物線的定義知
AA1=2m,BB1=m
∴△ABC中,AC=m,AB=3m,
∴kAB=2$\sqrt{2}$
直線AB方程為y=2$\sqrt{2}$(x-1)
與拋物線方程聯(lián)立消y得2x2-5x+2=0
所以AB中點(diǎn)到準(zhǔn)線距離為$\frac{{x}_{1}+{x}_{2}}{2}$+1=$\frac{9}{4}$.
故答案為:$\frac{9}{4}$.

點(diǎn)評(píng) 本題主要考查了拋物線的簡(jiǎn)單性質(zhì).考查了直線與拋物線的關(guān)系及焦點(diǎn)弦的問題.常需要利用拋物線的定義來解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將函數(shù)y=sin(x+$\frac{π}{6}$)(x∈R)的圖象上所有點(diǎn)的縱坐標(biāo)不變橫坐標(biāo)縮小到原來的$\frac{1}{2}$,再把圖象上各點(diǎn)向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,則所得的圖象的解析式為( 。
A.y=sin(2x+$\frac{5}{6}π$)B.y=sin($\frac{1}{2}$x+$\frac{1}{6}$π)C.y=sin(2x+$\frac{2}{3}$π)D.y=sin($\frac{1}{2}$x+$\frac{5}{12}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)$\overrightarrow{PA}=(k\;,\;12)$,$\overrightarrow{PB}=(4\;,\;5)$,$\overrightarrow{PC}=(10\;,\;k)$,則k=-2或11時(shí),點(diǎn)A,B,C共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)=sin(2x+φ)(0<φ<π)的圖象關(guān)于直線x=$\frac{π}{6}$對(duì)稱,則φ的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若全集U=R,集合A={x|1<2x<4},B={x|x-1≥0},則A∩∁UB=(  )
A.{x|1<x<2}B.{x|0<x≤1}C.{x|0<x<1}D.{x|1≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知圓O:x2+y2=4上到直線l:x+y=a的距離等于1的點(diǎn)至少有2個(gè),則a的取值范圍為( 。
A.(-3$\sqrt{2}$,3$\sqrt{2}$)B.(-∞,-3$\sqrt{2}$)∪(3$\sqrt{2}$,+∞)C.(-2$\sqrt{2}$,2$\sqrt{2}$)D.[-3$\sqrt{2}$,3$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知圓O:x2+y2=4上到直線l:x+y=a的距離等于1的點(diǎn)恰有3個(gè),則實(shí)數(shù)a的值為(  )
A.2$\sqrt{2}$B.$\sqrt{2}$C.-$\sqrt{2}$或$\sqrt{2}$D.-2$\sqrt{2}$或2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知復(fù)數(shù)z=$\frac{2+i}{1-i}$(i是虛數(shù)單位),則|z|=$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|-1≤x≤3},B={x|2x>2},則A∩B=( 。
A.{x|-1<x<3}B.{x|1<x≤3}C.{x|-1≤x<2}D.{x|x>2}

查看答案和解析>>

同步練習(xí)冊(cè)答案