19.已知函數(shù)y=f(x),x∈F.集合A={(x,y)|y=f(x),x∈F},B={(x,y)|x=1},則A∩B中所含元素的個數(shù)是(  )
A..0B..1C..0或1D..1或2

分析 根據(jù)函數(shù)的定義,在定義域內(nèi)有且只有一個函數(shù)值與它對應(yīng),y=f(x)定義域是F,當F包括x=1,則x=1時候,有且只有一個函數(shù)值,所以函數(shù)圖象與直線x=1只有一個交點,也就是兩個集合的交集元素個數(shù)只有1個;當F包括x=1時,A∩B中所含元素的個數(shù)為0.

解答 解:當1∉F,A∩B中所含元素的個數(shù)為0;
當1∈F,A∩B中所含元素的個數(shù)為1.
∴A∩B中所含元素的個數(shù)是0或1.
故選:C.

點評 本題考查交集及其運算,解答此題的關(guān)鍵是對題意的理解,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在如圖的知識結(jié)構(gòu)圖中:“求簡單函數(shù)的導(dǎo)數(shù)”的“上位”要素有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.等邊三角形ABC的邊長是a,AD是BC邊上的高,沿AD將△ABC折成直二面角,則點B、C的距離是( 。
A.$\frac{1}{2}$aB.$\frac{\sqrt{2}}{2}$aC.$\frac{\sqrt{3}}{2}$aD.a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,-\frac{π}{2}≤x≤0}\\{a(x-1)+1,x>0}\end{array}\right.$在(-$\frac{π}{2}$,+∞)上單調(diào)遞增,實數(shù)a的取值范圍( 。
A.(0,1]B.(0,1)C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知A={x|-2≤x≤5},B={x|m-1≤x≤m+1},B⊆A,則m的取值范圍為[-1,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,(e≈2.71),則
(1)函數(shù)g(f(x))的單調(diào)遞增區(qū)間為(0,+∞);
(2)若有g(shù)(f(a))=f(b)+1,實數(shù)b的取值范圍為[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列說法中錯誤的是(  )
A.對于命題p:?x0∈R,使得x0+$\frac{1}{{x}_{0}}$>2,則¬p:?x∈R,均有x+$\frac{1}{x}$≤2
B.“x=1”是“x2-3x+2=0”的充分不必要條件
C.命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
D.若p∧q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正項數(shù)列{an}的前n項和為Sn,且Sn是${a_n}^2$和an的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若${a_{k_n}}∈\{{a_1},{a_2},…{a_n},…\}$,且${a_{k_1}},{a_{k_2}},…,{a_{k_n}},…$成等比數(shù)列,當k1=2,k2=4時,求數(shù)列{kn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)y=$\left\{{\begin{array}{l}{{x^2}+1}&{(x≤0)}\\{-2x}&{(x>0)}\end{array}}$,則使得函數(shù)值為10的x的集合為{-3}.

查看答案和解析>>

同步練習(xí)冊答案