4.已知函數(shù)f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,(e≈2.71),則
(1)函數(shù)g(f(x))的單調(diào)遞增區(qū)間為(0,+∞);
(2)若有g(shù)(f(a))=f(b)+1,實(shí)數(shù)b的取值范圍為[0,+∞).

分析 (1)先求出函數(shù)f(x)的導(dǎo)數(shù),得到f(x)的單調(diào)區(qū)間,從而求出g(f(x))的單調(diào)區(qū)間;(2)根據(jù)基本不等式的性質(zhì)得到f(b)+1≥1,從而求出b的范圍即可.

解答 解:(1)f′(x)=$\frac{1}{2}$(ex+e-x)>0,f(x)在R上遞增,
g′(x)=$\frac{1}{2}$(ex-e-x)=$\frac{{e}^{2x}-1}{{2e}^{x}}$,
令g′(x)>0,解得:x>0,令g′(x)<0,解得:x<0,
∴g(x)在(-∞,0)遞減,在(0,+∞)遞增,
根據(jù)復(fù)合函數(shù)同增異減的原則,
函數(shù)g(f(x))在(0,+∞)單調(diào)遞增;
故答案為:(0,+∞);
(2)顯然f(x)的值域?yàn)镽,
∴g(f(a))的值域是g(x)的值域,
而g(x)=$\frac{1}{2}$(ex+e-x)≥1,
∴f(b)+1≥1,即f(b)≥0,
而f(0)=0,且f(x)在R上單調(diào)遞增,
∴b≥0.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查基本不等式的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若x>0,y>0,且$\frac{2}{x}+\frac{8}{y}=1$,則xy的范圍為[64,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)為R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+2x+8,則f(x)的解析式為$f(x)=\left\{\begin{array}{l}-{x^2}+2x-8,x<0\\ 0,x=0\\{x^2}+2x+8,x>0\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)f(x)=log${\;}_{\frac{1}{2}}$$\frac{1-ax}{x-1}$為奇函數(shù),a為常數(shù).
(1)求a的值;
(2)證明f(x)在區(qū)間(1,+∞)內(nèi)單調(diào)遞增;
(3)若對(duì)于區(qū)間[2,5]上的每一個(gè)x的值,不等式f(x)>($\frac{1}{2}$)x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)y=f(x),x∈F.集合A={(x,y)|y=f(x),x∈F},B={(x,y)|x=1},則A∩B中所含元素的個(gè)數(shù)是(  )
A..0B..1C..0或1D..1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖是一個(gè)空間幾何體的三視圖,則這個(gè)幾何體的外接球的體積是$\frac{125\sqrt{2}}{3}π$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}滿足:a1=$\frac{1}{7}$,對(duì)于任意的n∈N*,an+1=$\frac{7}{2}$an(1-an),則a2015-a2016=( 。
A.-$\frac{2}{7}$B.$\frac{2}{7}$C.-$\frac{3}{7}$D.$\frac{3}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)${Z}=-2(cos\frac{π}{3}+isin\frac{π}{3})$對(duì)應(yīng)的點(diǎn)在復(fù)平面上(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知l、m、n是三條不同的直線,α,β,γ是三個(gè)不同的平面,下列命題:①若l∥m,n⊥m,則n⊥l;②若l?α,m?β,α∥β,則l∥m;③若l∥?α,則l∥α
④若α⊥γ,β⊥γ,α∩β=l,則l⊥γ,其中真命題是①④.(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案