4.若變量x,y滿足約束條件:$\left\{\begin{array}{l}2x-y≥0\\ x+2y≥0\\ 3x+y-5≤0\end{array}\right.$,則2x+y的最大值為4.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,目標(biāo)函數(shù)的幾何意義是直線的縱截距,利用數(shù)形結(jié)合即可求z的取值范圍.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
設(shè)z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過(guò)點(diǎn)A時(shí),直線y=-2x+z的截距最大,
此時(shí)z最大.
由$\left\{\begin{array}{l}{2x-y=0}\\{3x+y-5=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
代入目標(biāo)函數(shù)z=2x+y得z=1×2+2=4.
即目標(biāo)函數(shù)z=2x+y的最大值為4.
故答案為:4

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在(1+x)6(2+y)4的展開(kāi)式中,含x4y3項(xiàng)的系數(shù)為( 。
A.210B.120C.80D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某良種培育基地正在培育一種小麥新品種A,種植了25畝,所得畝產(chǎn)數(shù)據(jù)(單位:千克)如下:
363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430.
分組頻數(shù)頻率
[360,370)
[370,380)
[380,390)
[390,400)
[400,410)
[410,420)
[420,430]
合計(jì)
(1)求這二十五個(gè)數(shù)據(jù)的中位數(shù);
(2)以組距為10進(jìn)行分組,完成答題卡上的品種A畝產(chǎn)量的頻率分布表;
(3)完成如圖上的品種A畝產(chǎn)量的頻率分布直方圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.不等式x2-x-2<0的解集是( 。
A.{x|x>2}B.{x|x<-1}C.{x|x<-1或x>2}D.{x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.?dāng)?shù)列{an}滿足a1=$\frac{1}{2}$,an+1=$\frac{a_n}{{1+2{a_n}}}$(n∈N*).
(1)寫(xiě)出a2,a3,a4,a5;
(2)由(1)寫(xiě)出數(shù)列{an}的一個(gè)通項(xiàng)公式;
(3)判斷實(shí)數(shù)$\frac{1}{2015}$是否為數(shù)列{an}中的一項(xiàng)?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.直線$\sqrt{3}$x-y-1=0的傾斜角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a=3,c=1,sin2A=sinC,則$\overrightarrow{AB}•\overrightarrow{AC}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知命題p:函數(shù)y=x2-2x+a在區(qū)間(1,2)上有1個(gè)零點(diǎn);命題q:函數(shù)y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果p∧q是假命題,p∨q是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{c}$,且$|\begin{array}{l}{\overrightarrow{a}}\\{\;}\end{array}|$=$|\begin{array}{l}{\overrightarrow}\\{\;}\end{array}|$=$|\begin{array}{l}{\overrightarrow{c}}\\{\;}\end{array}|$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案