2.已知函數(shù)f(x)=ax2+bx,且1≤f(1)≤2,2≤f(-2)≤4.向量$\overrightarrow m$=(a,b),$\overrightarrow n$=(0,2),則|$\overrightarrow m$-$\overrightarrow n$|的取值范圍為$[\sqrt{2},\sqrt{5}]$.

分析 函數(shù)f(x)=ax2+bx,且1≤f(1)≤2,2≤f(-2)≤4.可得:$\left\{\begin{array}{l}{1≤a+b≤2}\\{1≤2a-b≤2}\end{array}\right.$,如圖所示,表示的可行域?yàn)樗倪呅蜝ACD及其內(nèi)部的點(diǎn),可得A,B,C,D.
向量$\overrightarrow m$=(a,b),$\overrightarrow n$=(0,2),$\overrightarrow m$-$\overrightarrow n$=(a,b-2),設(shè)點(diǎn)P(0,2),可得|$\overrightarrow m$-$\overrightarrow n$|=$\sqrt{{a}^{2}+(b-2)^{2}}$∈[|PC|,|PA|].

解答 解:函數(shù)f(x)=ax2+bx,且1≤f(1)≤2,2≤f(-2)≤4.
∴$\left\{\begin{array}{l}{1≤a+b≤2}\\{2≤4a-2b≤4}\end{array}\right.$,即$\left\{\begin{array}{l}{1≤a+b≤2}\\{1≤2a-b≤2}\end{array}\right.$,
如圖所示,表示的可行域?yàn)樗倪呅蜝ACD及其內(nèi)部的點(diǎn),可得A(1,0),B$(\frac{4}{3},\frac{2}{3})$,C(1,1),D$(\frac{2}{3},\frac{1}{3})$.
向量$\overrightarrow m$=(a,b),$\overrightarrow n$=(0,2),$\overrightarrow m$-$\overrightarrow n$=(a,b-2),
設(shè)點(diǎn)P(0,2),
|PC|=$\sqrt{2}$,|PB|=$\frac{4\sqrt{2}}{3}$,|PA|=$\sqrt{5}$,|PD|=$\frac{\sqrt{29}}{3}$.
則|$\overrightarrow m$-$\overrightarrow n$|=$\sqrt{{a}^{2}+(b-2)^{2}}$∈[|PC|,|PA|]=$[\sqrt{2},\sqrt{5}]$,
故答案為:$[\sqrt{2},\sqrt{5}]$.

點(diǎn)評(píng) 本題考查了線性規(guī)劃的有關(guān)知識(shí)、不等式的性質(zhì)、兩點(diǎn)之間的距離公式,考查了數(shù)形結(jié)合方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知A,B,C三點(diǎn)的坐標(biāo)分別為A(2,0),B(0,2),C(cosα,sinα),其中α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)若$|{\overrightarrow{AC}}|=|{\overrightarrow{BC}}|$,求角α的值;
(2)若$\overrightarrow{AC}\;•\;\overrightarrow{BC}=-1$,求sin(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個(gè),生產(chǎn)一個(gè)衛(wèi)兵需5min,生產(chǎn)一個(gè)騎兵需7min,生產(chǎn)一個(gè)傘兵需4min,已知總生產(chǎn)時(shí)間不超過(guò)10h,若生產(chǎn)一個(gè)衛(wèi)兵可利潤(rùn)5元,生產(chǎn)一個(gè)騎兵可獲利潤(rùn)6元,生產(chǎn)一個(gè)傘兵可獲利潤(rùn)3元,怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=$\sqrt{5}$,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,則$\frac{\overrightarrow{AB}•\overrightarrow{BC}}{|\overrightarrow{BC}|}$=( 。
A.$\frac{\sqrt{6}}{6}$B.-$\frac{\sqrt{6}}{6}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)f(x)=$\frac{x+2}{2x+1}$的反函數(shù)為y=f-1(x),則f-1(2)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知復(fù)數(shù)z=$\frac{10}{3+i}$-2i,其中i是虛數(shù)單位,則|z|等于$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=sin2$\frac{ωx}{2}$+$\frac{1}{2}$sinωx-$\frac{1}{2}$(ω>0),x∈R,若f(x)在區(qū)間(π,2π)內(nèi)沒(méi)有零點(diǎn),則ω的取值范圍是( 。
A.(0,$\frac{1}{8}$]B.(0,$\frac{1}{4}$]∪[$\frac{5}{8}$,1)C.(0,$\frac{5}{8}$]D.(0,$\frac{1}{8}$]∪[$\frac{1}{4}$,$\frac{5}{8}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.下面是某港口一天中部分時(shí)刻測(cè)量得到的水深表(時(shí)間單位:小時(shí),水深單位:米)
時(shí)刻0:003:006:009:0012:0015:0018:0021:0024:00
水深6.58.56.54.56.58.56.54.56.5
若該港口水深關(guān)于時(shí)間的函數(shù)可以用y=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$),x∈[0,24)近似地表示:
(1)試求出函數(shù)的解析式;
(2)某船吃水深度(船底與水面之間的距離)是4米,安全條例規(guī)定要有大于或等于3.5米的安全間隙(船底與海洋底之間的距離),問(wèn)一天中在x∈[0,12]時(shí)間段,若要使此船連續(xù)停泊該港口時(shí)間最長(zhǎng),此船應(yīng)何時(shí)進(jìn)入該港口、何時(shí)離開(kāi)該港口?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,a=7,b=3,c=5,求三角形中的最大角及sinC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案