試用tan
α
2
表示sinα,并證明.
考點:二倍角的正弦,同角三角函數(shù)基本關系的運用
專題:計算題,三角函數(shù)的求值
分析:sinα=2sin
α
2
cos
α
2
=
2sin
α
2
cos
α
2
sin2
α
2
+cos2
α
2
,再弦化切,即可得出結(jié)論.
解答: 解:sinα=2sin
α
2
cos
α
2
=
2sin
α
2
cos
α
2
sin2
α
2
+cos2
α
2
=
2tan
α
2
1+tan2
α
2
點評:本題考查二倍角的正弦、同角三角函數(shù)基本關系的運用,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設變量x,y滿足約束條件
4x-9y+11≥0
4x+5y-3≥0
2x-y-5≤0
,則目標函數(shù)z=2x-3y的最小值為( 。
A、-4B、-2C、-1D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-ax(a∈R).
(1)若不等式f(ax)>a-3的解集為R,求實數(shù)a的取值范圍;
(2)設x>y>0,且xy=4,若不等式f(x)+f(y)+2ay≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sin(α-π)=2cos(α-2π),求
sin(7π-α)+5cos(2π-α)
3sin(
2
+α)-sin(-α)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
x
x
+
y
)=3
y
x
+5
y
),求
2x+
xy
+3y
x+
xy
-y
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=(m+1)x2-2(m+1)x-m的最值,其中m為常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ex-t(x+1).
(1)若f(x)≥0對一切正實數(shù)x恒成立,求t的取值范圍;
(2)設g(x)=f(x)+
t
ex
,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點,若對任意的t≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(3)求證:1n+2n+…+(n-1)n≤nn(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋子中共有12個球,其中有5個黑球,4個白球,3個紅球,從中任取2個球(假設取到每個球的可能性都相同).已知每取到一個黑球得0分,每取到一個白球得1分,每取到一個紅球得2分.用ξ表示任取2個球的得分的差的絕對值.
(1)求橢機變量ξ的分布列及ξ的數(shù)學期望Eξ;
(2)記“不等式ξx2-ξx+
1
2
>0的解集是實數(shù)集R”為事件A,求事件A發(fā)生的概率P(A).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標平面內(nèi),將每個點繞原點按逆時針方向旋轉(zhuǎn)45°的變換R所對應的矩陣為M,將每個點橫、縱坐標分別變?yōu)樵瓉淼?span id="tq6qtai" class="MathJye">
2
倍的變換T所對應的矩陣為N.
(Ⅰ)求矩陣M的逆矩陣M-1
(Ⅱ)求曲線xy=1先在變換R作用下,然后在變換T作用下得到的曲線方程.

查看答案和解析>>

同步練習冊答案