10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的兩個焦點(diǎn)分別為F1,F(xiàn)2,若橢圓上存在點(diǎn)P使得∠F1PF2是鈍角,則橢圓離心率的取值范圍是(  )
A.$(0,\frac{{\sqrt{2}}}{2})$B.$(\frac{{\sqrt{2}}}{2},1)$C.$(0,\frac{1}{2})$D.$(\frac{1}{2},1)$

分析 當(dāng)動點(diǎn)P在橢圓長軸端點(diǎn)處沿橢圓弧向短軸端點(diǎn)運(yùn)動時,P對兩個焦點(diǎn)的張角∠F1PF2漸漸增大,當(dāng)且僅當(dāng)P點(diǎn)位于短軸端點(diǎn)P0處時,張角∠F1PF2達(dá)到最大值,由此可得結(jié)論.

解答 解:如圖,當(dāng)動點(diǎn)P在橢圓長軸端點(diǎn)處沿橢圓弧向短軸端點(diǎn)運(yùn)動時,P對兩個焦點(diǎn)的張角∠F1PF2漸漸增大,當(dāng)且僅當(dāng)P點(diǎn)位于短軸端點(diǎn)P0處時,張角∠F1PF2達(dá)到最大值.由此可得:
∵橢圓上存在點(diǎn)P使得∠F1PF2是鈍角,
∴△P0F1F2中,∠F1P0F2>90°,
∴Rt△P0OF2中,∠OP0F2>45°,
所以P0O<OF2,即b<c,
∴a2-c2<c2,可得a2<2c2,
∴e>$\frac{\sqrt{2}}{2}$,
∵0<e<1,
∴$\frac{\sqrt{2}}{2}$<e<1.
故選:B.

點(diǎn)評 本題考查了橢圓的簡單幾何性質(zhì),考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.方程組$\left\{\begin{array}{l}3x+5y+6=0\\ 4x-3y-7=0\end{array}\right.$的增廣矩陣是$[\begin{array}{l}{3}&{5}&{-6}\\{4}&{-3}&{7}\end{array}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.像“3,4,5”這樣能夠成直角三角形的數(shù)稱為勾股數(shù),又稱為( 。
A.畢達(dá)哥拉斯數(shù)B.楊輝數(shù)C.拉格朗日恒等數(shù)D.三角數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若直線4x-3y=0與圓x2+y2-2x+ay+1=0相切,則實(shí)數(shù)a的值為-1或4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.現(xiàn)將甲、乙兩名學(xué)生的6次模擬測試成績(百分制)制成如圖所示的莖葉圖:
(Ⅰ)若對甲、乙兩人各再模擬測試6次,試估算6次測試成績中甲、乙兩人的成績位于(80,100)內(nèi)的次數(shù);
(Ⅱ)現(xiàn)對甲、乙兩人作最后一次模擬測試,求甲、乙兩人的成績至少有一人位于(80,100)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)z=1+2i的虛部是( 。
A.-2iB.2iC.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知正六棱柱的底面邊長和側(cè)棱長均為2,其三視圖中的俯視圖如圖所示,則其左視圖的面積是4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=cosx(sinx+$\sqrt{3}$cosx)-$\frac{{\sqrt{3}}}{2}$,x∈R.
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)設(shè)α>0,若函數(shù)g(x)=f(x+α)為奇函數(shù),求α的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.直線3x-4y-5=0的傾斜角的大小為arctan$\frac{3}{4}$(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

同步練習(xí)冊答案