18.若直線4x-3y=0與圓x2+y2-2x+ay+1=0相切,則實數(shù)a的值為-1或4.

分析 把圓的方程化為標準方程后,找出圓心坐標和圓的半徑,然后根據(jù)直線與圓相切得到圓心到直線的距離等于圓的半徑,列出關(guān)于a的方程,求出方程的解即可得到a的值.

解答 解:把圓的方程化為標準方程得:(x-1)2+(y+$\frac{a}{2}$)2=$\frac{{a}^{2}}{4}$,
所以圓心坐標為(1,-$\frac{a}{2}$),半徑r=|$\frac{a}{2}$|,
由已知直線與圓相切,得到圓心到直線的距離d=$\frac{|4+\frac{3a}{2}|}{5}$=r=|$\frac{a}{2}$|,
解得a=-1或4.
故答案為:-1或4.

點評 此題考查學(xué)生靈活運用點到直線的距離公式化簡求值,掌握直線與圓相切時滿足的關(guān)系,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)點O在△ABC內(nèi)部且滿足$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$,現(xiàn)將一粒豆子撒在△ABC中,則豆子落在△OAB內(nèi)的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和為Sn,且滿足an=3Sn-2(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若對任意的x>1,函數(shù)x+xln x≥k(3x-e)(其中e是白然對數(shù)的底數(shù),e=2.71828…),則實數(shù)k的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的兩個焦點分別為F1,F(xiàn)2,點P是橢圓上一點,則△PF1F2的周長為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知矩陣A=$(\begin{array}{l}{2}&{3}\\{1}&{2}\end{array})$,矩陣B=$(\begin{array}{l}{2}&{0}&{1}\\{1}&{3}&{2}\end{array})$,C=$(\begin{array}{l}{2}\\{1}\\{-3}\end{array})$,
(1)求AB;
(2)求(AB)C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的兩個焦點分別為F1,F(xiàn)2,若橢圓上存在點P使得∠F1PF2是鈍角,則橢圓離心率的取值范圍是(  )
A.$(0,\frac{{\sqrt{2}}}{2})$B.$(\frac{{\sqrt{2}}}{2},1)$C.$(0,\frac{1}{2})$D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=$\frac{-lnx}{x+1}$+$\frac{1}{x}$,證明f(x)>$\frac{lnx}{x-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱柱ABC-A1B1C1中,棱AC的中點為D
(1)求證:B1C∥平面A1BD;
(2)若平面ABC⊥平面ABB1A1,AA1=AB=$\sqrt{2}$BC=$\sqrt{2}$AC=2,∠A1AB=60°,求三棱錐D-A1BC1的體積.

查看答案和解析>>

同步練習(xí)冊答案