2.已知a>0,b>0,c>0,函數(shù)f(x)=|x+a|+|x-b|+c的最小值為4.
(1)求a+b+c的值;
(2)求$\frac{1}{4}$a2+$\frac{1}{9}$b2+c2的最小值.

分析 (1)運(yùn)用絕對值不等式的性質(zhì),注意等號成立的條件,即可求得最小值;
(2)運(yùn)用柯西不等式,注意等號成立的條件,即可得到最小值.

解答 解:(1)因?yàn)閒(x)=|x+a|+|x-b|+c≥|(x+a)-(x-b)|+c=|a+b|+c,
當(dāng)且僅當(dāng)-a≤x≤b時,等號成立,
又a>0,b>0,所以|a+b|=a+b,
所以f(x)的最小值為a+b+c,
所以a+b+c=4;
(2)由(1)知a+b+c=4,由柯西不等式得,
($\frac{1}{4}$a2+$\frac{1}{9}$b2+c2)(4+9+1)≥($\frac{a}{2}$•2+$\frac{3}$•3+c•1)2=(a+b+c)2=16,
即$\frac{1}{4}$a2+$\frac{1}{9}$b2+c2≥$\frac{8}{7}$
當(dāng)且僅當(dāng)$\frac{\frac{1}{2}a}{2}$=$\frac{\frac{1}{3}b}{3}$=$\frac{c}{1}$,即a=$\frac{8}{7}$,b=$\frac{18}{7}$,c=$\frac{2}{7}$時,等號成立.
所以$\frac{1}{4}$a2+$\frac{1}{9}$b2+c2的最小值為$\frac{8}{7}$.

點(diǎn)評 本題主要考查絕對值不等式、柯西不等式等基礎(chǔ)知識,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax3+x2(a∈R)在x=$-\frac{4}{3}$處取得極值.
(Ⅰ)確定a的值;
(Ⅱ)若g(x)=f(x)ex,討論g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若a,b是函數(shù)f(x)=x2-px+q(p>0,q>0)的兩個不同的零點(diǎn),且a,b,-2這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q的值等于9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.(x+2)5的展開式中,x2的系數(shù)等于80.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)過點(diǎn)$(0,\sqrt{2})$,且離心率e為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓E的方程;
(2)設(shè)直線x=my-1(m∈R)交橢圓E于A,B兩點(diǎn),判斷點(diǎn)G$(-\frac{9}{4},0)$與以線段AB為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在區(qū)間[0,1]上隨機(jī)取兩個數(shù)x,y,記P1為事件“x+y≥$\frac{1}{2}$”的概率,P2為事件“|x-y|≤$\frac{1}{2}$”的概率,P3為事件“xy≤$\frac{1}{2}$”的概率,則( 。
A.P1<P2<P3B.P2<P3<P1C.P3<P1<P2D.P3<P2<P1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某廠用鮮牛奶在某臺設(shè)備上生產(chǎn)A,B兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時,獲利1000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時,獲利1200元.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)A,B兩種產(chǎn)品時間之和不超過12小時.假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個隨機(jī)變量,其分布列為
W121518
P0.30.50.2
該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個隨機(jī)變量.
(1)求Z的分布列和均值;
(2)若每天可獲取的鮮牛奶數(shù)量相互獨(dú)立,求3天中至少有1天的最大獲利超過10000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)為B,左焦點(diǎn)為F,離心率為$\frac{\sqrt{5}}{5}$.
(Ⅰ)求直線BF的斜率.
(Ⅱ)設(shè)直線BF與橢圓交于點(diǎn)P(P異于點(diǎn)B),過點(diǎn)B且垂直于BP的直線與橢圓交于點(diǎn)Q(Q異于點(diǎn)B),直線PQ與y軸交于點(diǎn)M,|PM|=λ|MQ|.
(i)求λ的值.
(ii)若|PM|sin∠BQP=$\frac{7\sqrt{5}}{9}$,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知S=$\frac{π}{200000}$(sin$\frac{π}{200000}$+sin$\frac{2π}{200000}$+sin$\frac{3π}{200000}$+…+sin$\frac{100000π}{200000}$),推測下列各值中與S最接近的是(  )
A.0.9988B.0.9999C.1.0001D.2.0002

查看答案和解析>>

同步練習(xí)冊答案