12.已知命題p:方程$\frac{x^2}{m}+\frac{y^2}{4-m}=1$表示焦點(diǎn)在x軸上的橢圓,命題q:(m-1)x2+(m-3)y2=1表示雙曲線.若p∨q為真命題,則實(shí)數(shù)m的取值范圍是(1,4).

分析 利用橢圓與雙曲線的標(biāo)準(zhǔn)方程、簡(jiǎn)易邏輯的判定方法即可得出.

解答 解:命題p:方程$\frac{x^2}{m}+\frac{y^2}{4-m}=1$表示焦點(diǎn)在x軸上的橢圓,∴m>4-m>0,m≠4-m,解得2<m<4.
命題q:(m-1)x2+(m-3)y2=1表示雙曲線.∴(m-1)(m-3)<0,解得1<m<3.
若p∨q為真命題,則2<m<4或1<m<3.
則實(shí)數(shù)m的取值范圍是(1,4).
故答案為:(1,4).

點(diǎn)評(píng) 本題考查了橢圓與雙曲線的標(biāo)準(zhǔn)方程、簡(jiǎn)易邏輯的判定方法、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow b$=(x,-2),若$\overrightarrow a$與$\overrightarrow b$共線,則x的值為( 。
A.-4B.4C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示,拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過(guò)點(diǎn)F且斜率存在的直線l交拋物線C于A,B兩點(diǎn),已知當(dāng)直線l的斜率為1時(shí),|AB|=8.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過(guò)點(diǎn)A作拋物線C的切線交直線x=$\frac{p}{2}$于點(diǎn)D,試問(wèn):是否存在定點(diǎn)M在以AD為直徑的圓上?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知?jiǎng)訄AC過(guò)點(diǎn)F(1,0),且與直線x=-1相切.
(Ⅰ)求動(dòng)圓圓心C的軌跡方程;并求當(dāng)圓C的面積最小時(shí)的圓C1的方程;
(Ⅱ)設(shè)動(dòng)圓圓心C的軌跡曲線E,直線y=$\frac{1}{2}$x+b與圓C1和曲線E交于四個(gè)不同點(diǎn),從左到右依次為A,B,C,D,且B,D是直線與曲線E的交點(diǎn),若直線BF,DF的傾斜角互補(bǔ),求|AB|+|CD|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)P是橢圓$\frac{x^2}{4}+{y^2}=1$上的一點(diǎn),且以點(diǎn)P及焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的面積等于$\sqrt{3}$,則這樣的點(diǎn)P的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)求與雙曲線$\frac{x^2}{9}-\frac{y^2}{4}=1$共漸近線,且過(guò)點(diǎn)(3,4)的雙曲線的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右焦點(diǎn)的直線$x+y-\sqrt{3}=0$交M于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),P為AB的中點(diǎn),且OP的斜率為$\frac{1}{2}$,求橢圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,若b=1,$\frac{1}{2}sinB=cos({B+C})sinC$,則當(dāng)角B取最大值時(shí),△ABC的周長(zhǎng)為( 。
A.3B.$2+\sqrt{2}$C.$2+\sqrt{3}$D.$3+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=|x-2|
(1)解不等式:f(x+1)+f(x+3)<4;
(2)已知a>2,求證:?x∈R,f(ax)+af(x)>2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.與橢圓$C:\frac{x^2}{9}+\frac{y^2}{5}=1$共焦點(diǎn)且過(guò)點(diǎn)$P(3,\sqrt{2})$的雙曲線方程為( 。
A.${x^2}-\frac{y^2}{3}=1$B.$\frac{x^2}{3}-{y^2}=1$C.$\frac{x^2}{2}-\frac{y^2}{6}=1$D.$\frac{x^2}{6}-\frac{y^2}{2}=1$

查看答案和解析>>

同步練習(xí)冊(cè)答案