分析 由已知得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,n≥2,由此利用累加法能求出an;由${a}_{n}=\frac{2}{n(n+1)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$,利用裂項求和法能求出Sn.
解答 解:∵在數列{an}中a1=1,且an=$\frac{n-1}{n+1}$an-1(n≥2),
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,n≥2,
∴an=${a}_{1}×\frac{{a}_{2}}{{a}_{1}}×\frac{{a}_{3}}{{a}_{2}}×…×\frac{{a}_{n}}{{a}_{n-1}}$
=$1×\frac{1}{3}×\frac{2}{4}×\frac{3}{5}×…×\frac{n-1}{n+1}$
=$\frac{2}{n(n+1)}$,n≥2.
n=1時,上式成立,∴${a}_{n}=\frac{2}{n(n+1)}$.n∈N*.
∵${a}_{n}=\frac{2}{n(n+1)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$,
∴Sn=$\frac{1}{2}$($1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}$)
=$\frac{1}{2}(1-\frac{1}{n+1})$
=$\frac{n}{2(n+1)}$.
點評 本題考查數列的通項公式和前n項和的求法,是中檔題,解題時要認真審題,注意累加法和裂項求和法的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com