設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對(duì)于給定的正數(shù)m,定義函數(shù)fm(x)=
f(x),f(x)≤m
m,f(x)>m
,取函數(shù)f(x)=3-|1-x|,當(dāng)m=
1
2
時(shí),函數(shù)y=fm(x)的單調(diào)遞減區(qū)間為
 
考點(diǎn):指數(shù)式與對(duì)數(shù)式的互化
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:先根據(jù)題中所給函數(shù)定義求出函數(shù)函數(shù)fK(x)的解析式,從而得到一個(gè)分段函數(shù),然后再利用指數(shù)函數(shù)的性質(zhì)求出所求即可.
解答: 解:由題意可得:f
1
2
(x)≤
1
2
,得3-|1-x|
1
2
,解得:x≥1+log32或x≤1-log32,
所以f
1
2
(x)=
31-x(x≥1+log32
1
2
(1-log32<x<1+log32)
3x-1(x≤1-log32)

故函數(shù)的減區(qū)間為:[1+log32,+∞).
故答案為:[1+log32,+∞).
點(diǎn)評(píng):本題主要考查了抽象函數(shù)及其應(yīng)用,同時(shí)考查了分段函數(shù)的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正實(shí)數(shù)x,y,z滿(mǎn)足2x(x+
1
y
+
1
z
)=yz,則(x+
1
y
)(x+
1
z
)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
2x+2
的值域?yàn)?div id="ieuaiw4" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax3+3x2+2且f′(-1)=4,則實(shí)數(shù)a的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果復(fù)數(shù)
1+ai
2-i
的實(shí)部和虛部相等,則實(shí)數(shù)a等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
a2
+
y2
b2
=1的長(zhǎng)軸長(zhǎng)為6,右焦點(diǎn)F是拋物線(xiàn)y2=8x的焦點(diǎn),則該橢圓的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,1),
b
=(1,-2),
c
=(m,2);若(2
a
-3
b
)⊥
c
,則m=(  )
A、-4B、-16C、4D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m(x+m)(2x-m-6),g(x)=(
1
2
x-2,命題p:?x∈R,f(x)<0或g(x)<0.命題q:若方程f(x)=0的兩根為α,β,則α<1且β>1.如果命題p∧q為真命題,則實(shí)數(shù)m的取值范圍是( 。
A、(-8,-2)∪(-1,0)
B、(-8,-2)∪(-1,1)
C、(-8,-4)∪(-2,0)
D、(-8,-4)∪(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,定義域是R且為增函數(shù)的是(  )
A、y=e-x
B、y=x
C、y=lnx
D、y=-
1
x

查看答案和解析>>

同步練習(xí)冊(cè)答案