2.若2sin2α=1-cos2α,則tanα等于(  )
A.-2B.2C.-2或0D.2或0

分析 由條件利用二倍角公式、同角三角函數(shù)的基本關(guān)系,求得tanα的值.

解答 解:∵2sin2α=1-cos2α,即4sinαcosα=1-(1-2sin2α)=2sin2α,
∴sinα=0 或2cosα=sinα,∴tanα=0 或tanα=2,
故選:D.

點(diǎn)評(píng) 本題主要考查二倍角公式的應(yīng)用,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若$\frac{cosx-sinx}{cosx+sinx}$=2,則sin2x-sin2x=$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),則異面直線AE與BF所成角的余弦值為( 。
A.-$\frac{{5\sqrt{6}}}{18}$B.-$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{6}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,△ABC是邊長(zhǎng)為2的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=1.
(Ⅰ)證明:DE∥平面ABC;
(Ⅱ)證明:平面ABD⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知復(fù)數(shù)z=(2-i)(1+i),則在復(fù)平面內(nèi),z對(duì)應(yīng)點(diǎn)的坐標(biāo)為(3,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間(-∞,+∞)上單調(diào)遞減,若f(3x+1)+f(1)≥0,則x的取值范圍是(-∞,-$\frac{2}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點(diǎn)M(m,n)在直線x+2$\sqrt{2}$y-3=0上,則$\sqrt{{m}^{2}+{n}^{2}}$的最小值為( 。
A.1B.2C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)向量$\overrightarrow a$=(1,x),$\overrightarrow b$=(x,4),則“x=$\int_{1}^{e}{\frac{2}{t}}$dt”(e=2.718…是自然對(duì)數(shù)的底數(shù))是“$\overrightarrow a$∥$\overrightarrow b$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項(xiàng)和Sn,且滿足Sn+1-2Sn=n+1,已知a1=1.
(1)求an的通項(xiàng)公式;
(2)若bn=n•an,求b1+b2+…+bn的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案